مطالعه تجربی چگالش قطره ای بر روی سطوح آب‌گریز شده با استفاده از فرایند الکترونشست تک مرحله ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

2 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

چگالش قطر های بر روی سطوح آ بگریز و ابرآ بگریز اتفاق می افتد. میزان انتقال حرارت چگالش قطر های وابستگی بسیار زیادی به نحوه ی آماد ه سازی سطح آ بگریز دارد. دو مشخصه ی اصلی سطوح آ بگریز وجود میکرو-نانوساختارها و
انرژی سطحی پائین آنها است. در این مقاله از روش الکترونشست تک مرحله ای برای ایجاد میکرو-نانو ساختارها بر روی نمونه ی مسی و پوشش تک لایه ی خودچینش یافته ی ۱-اکتادکان تیول به عنوان کاهنده ی انرژی سطحی به منظور استفاده در فرآیند چگالش قطرهای استفاده شده است. بدین منظور اثر پارامترهای مختلف نظیر شد تجریان سلول الکتروشیمیایی و زمان فرآیند الکترونشست بر میزان انتقال حرارت چگالش قطرهای در یک دستگاه چگالش که برای این کار توسعه داده
شده، مورد بررسی قرار گرفتند. سطح نمونه ها با عکس میکروسکوپ الکترونی و آنالیز پراش اشعه ایکس تحلیل شدند. نتایج نشان می دهد که میکرو-نانوساختارهایی از جنس مس ضمن فرآیند الکترونشست بر روی سطح به وجود آمده است. از نتایج مشخص شد که زمان و شدت جریان تأثیر مثبتی بر روی انتقال حرارت چگالش قطرهای دارند. به طوری که سطوح تهیه شده با زمان های پائین الکترونشست ) ۱۵ و ۴۵ ثانیه( انتقال حرارت چگالش قطرهای بدتر از چگالش لایه ای و برای زمان های زیاد ) ۱۳۵ ثانیه( الکترونشست انتقال حرارت چگالش قطرهای در محدوده اختلاف دماهای کمتر ۱۰ کلوین در حدود ۲ تا ۴ برابر بیشتر از چگالش لایه ای است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Empirical Study on Dropwise Condensation Occurred on Surfaces Hydrophobized Using a Single-Step Electrodeposition

نویسندگان [English]

  • Hamid Reza Talesh Bahramia 1
  • Alireza Azizi 2
  • Hamid Saffari 1
1 School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran.
2 School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran.
چکیده [English]

Dropwise condensation occurs on hydrophobic and superhydrophobic surfaces. The rate of heat transfer depends mostly on the preparing process of hydrophobic surface. Two main features of hydrophobic surfaces are existing micro-nanostructures and their low surface energy. In this paper, a one-step electrodeposition process is used to produce the necessary micro-nanostructures on copper surfaces and a self-assembled mono-layer of 1-Octaecanethiol as surface energy reducing agent. Effects of different electrochemical cell parameters such as electrical current and time of process on the dropwise
condensation heat transfer are investigated. The heat transfer experiments are performed in a device fabricated for this purpose. The surface of the specimens is analyzed using scanning electron microscopy images and X-ray diffraction analysis. The results show that some microstructures made from copper grow on the surface. The results show that current and process time have positive effects on the dropwise condensation heat transfer. It has been seen that surfaces fabricated at low electrodeposition time (15 and 45 sec) have a worse dropwise heat transfer rate than filmwise condensation heat transfer. On the other hand, higher electrodeposition times (135 sec) give 2-4 times higher heat transfer than filmwise heat
transfer in the sub-cooling range lower than 10 Kelvin.

کلیدواژه‌ها [English]

  • Dropwise Condensation
  • Superhydrophobic Surfaces
  • Self-assembly
  • Electrodeposition
  • Phase change
  1. [1]  A. Asadi, M. Rahnama, M.A. Talebizadeh, H.B. Harandi, Performance optimization of multi- effect distillation-thermal vapor compression desalination using genetic algorithm, Amirkabir Journal of Mechanical Engineering, 50(2) (2018) 161-170(in Persian).

    [2]    S.M.A. Hosseini, F. Sarhaddi, Performance Assessment of a Humidification- Dehumidification Desalination Unit Connected to Photovoltaic Thermal Collectors, Amirkabir Journal of Mechanical Engineering, 49(3) (2017) 653-662(in Persian).

    [3]  A. Nourbakhsh, S. Jahantighi, A. Mohammadi, Simulation of heat transfer in shutdown time of engine by conjugate heat transfer, Amirkabir Journal of Mechanical Engineering, 0 (2018) (in Persian).

    [4]  N. Miljkovic, R. Enright, E.N. Wang, Modeling and Optimization of Superhydrophobic Condensation, J. Heat Transfer, 135(11) (2013) 111004.

    [5]    J.B. Boreyko, Y. Zhao, C.-H. Chen, Planar jumping-drop thermal diodes, Appl. Phys. Lett., 99(23) (2011) 234105--234103.

    [6]  E. Schmidt, W. Schurig, W. Sellschopp, Versuche über die Kondensation von Wasserdampf in Film- und Tropfenform, Technische Mechanik und Thermodynamik, 1(2) (1930) 53-63.

    [7]  N. Miljkovic, Development and characterization of micro/nano structured surfaces for enhanced condensation, Massachusetts Institute of Technology, 2013.

    [8]  S.B. Barati, N. Pionnier, J.-C. Pinoli, S. Valette, Y. Gavet, Investigation spatial distribution of droplets and the percentage of surface coverage during dropwise condensation, International Journal of Thermal Sciences, 124 (2018) 356- 365.

    [9]    Q. Peng, L. Jia, C. Dang, X. Zhang, Q. Huang, Experimental investigation on flow condensation of R141b with CuO nanoparticles in a vertical circular tube, Applied Thermal Engineering, 129 (2018) 812-821.

    [10]H.R. Talesh Bahrami, S. Zareie, H. Saffari, A numerical analysis of dropwise condensation of nanofluid on an inclined plate, Modares Mechanical Engineering, 17(3) (2017) 105- 114.

    [11]S. Zarei, H.R. Talesh Bahrami, H. Saffari, Effects of geometry and dimension of micro/ nano-structures on the heat transfer in dropwise condensation: A theoretical study, Applied Thermal Engineering 137 (2018) 440-450.

    [12]H.R. Talesh Bahrami, B. Ahmadi, H. Saffari, Optimal condition for fabricating superhydrophobic copper surfaces with controlled oxidation and modification processes, Materials Letters, 189 (2017) 62-65.

    [13]H.R. Talesh Bahrami, B. Ahmadi, H. Saffari, Preparing superhydrophobic copper surfaces with rose petal or lotus leaf property using a simple etching approach, Materials Research Express, 4(5) (2017).

    [14]      E. Matei, C. Busuioc, A. Evanghelidis,

    1. Zgura, M. Enculescu, M. Beregoi, I. Enculescu, Hierarchical functionalization of electrospun fibers by electrodeposition of zinc oxide nanostructures, Applied Surface Science (2018).

    [15]G.V.G. Mercado, C.J. González, M.I. Oliva, V. Brunetti, G.A. Eimer, Morphology of copper deposits obtained by metallic electrodeposition, Procedia Materials Science, 8 (2015) 635-640.

    [16]W. Xi, Z. Qiao, C. Zhu, A. Jia, M. Li, The preparation of lotus-like super-hydrophobic copper surfaces by electroplating, Applied Surface Science, 255(9) (2009) 4836-4839.

    [17]Z. Chen, L. Hao, A. Chen, Q. Song, C. Chen, A rapid one-step process for fabrication of superhydrophobic surface by electrodeposition method, Electrochimica Acta, 59 (2012) 168- 171.

    [18]K. Rurack, R. Martínez-Máñez, The supramolecular chemistry of organic-inorganic hybrid materials, John Wiley & Sons, 2010.

    [19] A. Das, H. Kilty, P. Marto, G. Andeen, A. Kumar, The use of an organic self-assembled monolayer coating to promote dropwise condensation of steam on horizontal tubes, Journal of heat transfer, 122(2) (2000) 278- 286.

    [20] C.-H. Chen, Q. Cai, C. Tsai, C.-L. Chen, G. Xiong, Y. Yu, Z. Ren, Dropwise condensation on superhydrophobic surfaces with two-tier roughness, Applied Physics Letters, 90(17) (2007) 173108.

    [21]  A.K. Das, H.P. Kilty, P.J. Marto, G.B. Andeen, Kumar, The Use of an Organic Self- Assembled Monolayer Coating to Promote Dropwise Condensation of Steam on Horizontal Tubes, Journal of Heat Transfer 122(2) (2000) 278-286.

    [22] Q. Yang, A. Gu, Dropwise Condensation on SAM and Electroless Composite Coating Surfaces, Journal of chemical engineering of Japan, 39(8) (2006) 826-830.

    [23] L. Yin, Y. Wang, J. Ding, Q. Wang, Q. Chen, Water condensation on superhydrophobic aluminum surfaces with different low-surface- energy coatings, Applied Surface Science, 258(8) (2012) 4063-4068.

    [24] D. Torresin, M.K. Tiwari, D. Del Col, D. Poulikakos, Flow condensation on copper- based nanotextured superhydrophobic surfaces, Langmuir, 29(2) (2013) 840-848.

    [25]  L. Chen, S. Liang, R. Yan, Y. Cheng, X. Huai, S. Chen, n-Octadecanethiol self-assembled monolayer coating with microscopic roughness for dropwise condensation of steam, Journal of Thermal Science, 18(2) (2009) 160-165.

    [26] J. Reid, Copper electrodeposition: principles and recent progress, Japanese Journal of Applied Physics, 40(4S) (2001) 2650.

    [27] K.W. Hwang, D. Kim, H. Jo, H.S. Park, K. Moriyama, M.H. Kim, Effects of heat flux on dropwise condensation on a superhydrophobic surface, J. Mech. Sci. Technol., 30(5) (2016) 2141--2149.

    [28]   ImageJ, in, 2017.

    [29]M. Kedzierski, J. Worthington III, Design and machining of copper specimens with micro holes for accurate heat transfer measurements, EXPERIMENTAL HEAT TRANSFER An International Journal, 6(4) (1993) 329-344.

    [30]P. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill Education, 2002.

    [31]H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Transformation of a simple plastic into a superhydrophobic surface, Science, 299(5611) (2003) 1377-1380.

    [32]A. Lafuma, D. Quéré, Superhydrophobic states, Nature Materials, 2(7) (2003) 457.

    [33]A. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday society, 40 (1944) 546-551.

    [34]    N.D. Nikolić, L.J. Pavlović, M.G. Pavlović, K.I. Popov, Effect of temperature on the electrodeposition of disperse copper deposits, Journal of the Serbian Chemical Society, 72(12) (2007) 1369-1381.

    [35]G.A. O’neill, J.W. Westwater, Dropwise condensation of steam on electroplated silver surfaces, International Journal of Heat and Mass Transfer, 27(9) (1984) 1539-1549.

    [36]D. Barker, F.C. Walsh, Applications of Faraday’s Laws of Electrolysis in Metal Finishing, Transactions of the IMF, 69(4) (1991) 158-162.

    [37]   N. Miljkovic, R. Enright, Y. Nam, K. Lopez,

    N. Dou, J. Sack, E.N. Wang, Jumping- droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces, Nano letters, 13(1) (2012) 179-187.

    [38]    M.  Sbragaglia, A.M.  Peters,  C.  Pirat, B.M.Borkent,   R.G.   Lammertink,   M.   Wessling, D. Lohse, Spontaneous breakdown of superhydrophobicity, Physical review letters, 99(15) (2007) 156001.

    [39] J. Cheng,A. Vandadi, C.-L. Chen, Condensation heat transfer on two-tier superhydrophobic surfaces, Applied Physics Letters, 101(13) (2012) 131909.

    [40] N. Miljkovic, D.J. Preston, R. Enright, E.N. Wang, Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces, ACS Nano, 7(12) (2013) 11043-11054.

    [41] W.L.B. A. Pridgeon, Studies in Evaporator Design. V-Effect of Surface Conditions, Industrial and Engineering Chemistry 16(5) (1924) 474–478.

    [42] N.Y. M. Izumi, T. Shinmura, Y. Isobe, S. Ohtani, J.W. Westwater, Drop and filmwise condensation on horizontally scratched rough surfaces, Heat Transfer–Japanese Research, 18 (1989).

    [43]  R. Yun, J. Heo, Y. Kim, Effects of surface roughness and tube materials on the filmwise condensation heat transfer coefficient at low heat transfer rates, Int. Commun. Heat Mass Transfer, 33(4) (2006) 445-450.

    [44]  H.R. Talesh Bahrami, H. Saffari, Theoretical study of stable dropwise condensation on an inclined micro/nano-structured tube, Int. J. Refrig, 75 (2017) 141-154.

    [45]  H. Saffari, B. Sohrabi, M.R. Noori, H.R.T. Bahrami, Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes, Applied Surface Science, 435 (2018) 1322-1328.