تأثیر چگالی نابجایی‌ها بر نمودار حد شکل‌دهی پیش‌بینی‌شده به روش پلاستیسیته‌ بلوره‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا دانشکده مهندسی مکانیک دانشگاه گیلان رشت ایران

2 گیلان*مهندسی مکانیک

3 دانشکده مهندسی مکانیک/دانشگاه گیلان/رشت/ایران

چکیده

یکی از مهم‌ترین و پرکاربردترین ابزارها برای پیش‌بینی رفتار ورق‌ها، نمودار حد شکل‌دهی است. مدل مارشینیاک-کوزینسکی یکی از روش‌های پیش‌بینی است که می‌تواند با معادلات پدیدار شناختی یا از طریق معادلات مربوط به پلاستیسیته بلورهای برای دستیابی به نتایج موردنظر ترکیب شود. در این تحقیق، تالش شده است که از ترکیب مستقیم روش مارشینیاک-کوزینسکی با پلاستیسته بلورهای برای رسم نمودارهای حد شکل‌دهی استفاده شود. روش مستقیم به علت حالت خاص معادلات ریاضی مربوط به پیش‌بینی نمودار حد شکل‌دهی انتخاب شده است. در این تحقیق از فلز چند بلوره مکعبی مرکز وجوه پر، استفاده شده است، بنابراین روش تیلور برای چندبلوره‌ها می‌تواند مورداستفاده قرار گیرد. هرچند این روش برای توصیف پلاستیسیته، از تعاملات بین بلوره‌ها صرف‌نظر کرده ولی با ساده‌سازی نظریه یکنواختی کرنش، هزینه محاسباتی را کاهش داده است. در این تحقیق دو روش نابجایی‌ها و پلاستیسته چندبلوره‌ها توسط راهکار جدیدی ادغام شده‌اند. فقط فرآیند سخت شدن بر اساس نابجایی‌ها مدل شده و کل تحلیل بر اساس پلاستیسیته بلورهای وابسته به نرخ انجام شده است. برای اولین بار نمودار حد شکل‌دهی با در نظر گرفتن اثر چگالی نابجایی‌ها رسم شده است و نتایج نشان داده است که در نظر گرفتن اثر چگالی نابجایی‌ها در تغییرات مقاومت برشی، باعث نزدیک شدن نمودارهای حد شکل‌دهی به مقادیر تجربی می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

e Limit Forming on Density Dislocation of Effect T

نویسندگان [English]

  • sedigheh Mohamadnejad 1
  • Ali Basti 2
  • Reza Ansari 3
1 Phd student,Faculty of mechanical engineering university of Guilan, rasht ,iran
2
3 Faculty of mechanical engineering /University of Guilan/rasht /Iran
چکیده [English]

One of the most important and widely used tools to predict the behavior of sheets is   the forming limit diagram. The Marciniak-Kuczynski model is one of the prediction methods, which can be combined with the phenomenological or the crystal plasticity equations to achieve the desired results. In this research, to predict the forming limit diagram, the direct combination of the Marciniak- Kuczynski method with the crystal plasticity has been applied. The direct method is chosen due to the particular state of the mathematical equations associated with forming limit diagram. In this study a face-centered cubic polycrystalline metal has been used here, so, the Taylor method for the polycrystals can be used. Although this method ignores the interactions between the crystals to describe plasticity, it can also reduce the computational cost by simplifying the strain uniformity theory. In this study, polycrystal plasticity and dislocation methods have been merged in a new way. Only the hardening process is modeled based on the dislocation density and its modifications, and the entire analysis is based on the rate-dependent crystal plasticity. For the first time, the forming limit diagram is plotted to take into account the effect of dislocation density, and the results show that considering the effect of the dislocation density on the shear strength changes, the forming limit diagram formulation becomes nearer to the experimental values.

کلیدواژه‌ها [English]

  • Dislocations
  • Forming Limit diagram
  • Face-centered cubic materials: Crystal Plasticity
  • Taylor Method
[1]    W. Lee, Y. Chen, Simulation of microindentation hardness of FCC single crystals by mechanism-based strain gradient crystal plasticity, International Journal of Plasticity, 26(10) (2010) 1527-1540.
[2]    G.I. Taylor, The mechanism of plastic deformation of crystals. Part I-Theoretical, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 145(855) (1934) 326.783
[3]    K.S. Havner, A.H. Shalaby, A simple mathematical theory of finite distortional latent hardening in single crystals, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 358(1692) (1977) 47-70.
[4]    R. Peirce, R.J. Asaro, A. Needleman, An analysis of nonuniform and localized deformation in ductile single crystals, Acta Metallurgica, 30(6) (1982) 1087-1119.
[5]    R.J. Asaro, Micromechanics of crystals and polycrystals, in:  Advances In Applied Mechanics, Elsevier, 1983, pp. 1-115.
[6]    T.Y. Wu, J.L. Bassani, C. Laird, Latent hardening in single crystals-I. Theory and experiments, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 435 (1991) 1-19.
[7]    J.L. Bassani, T.Y. Wu, Latent hardening in single crystals. II. Analytical characterization and predictions, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 435(1893) (1991) 2141.
[8]    S.R. Kalidindi, C.A. Bronkhorst, L. Anand, Crystallographic texture evolution in bulk deformation processing of FCC metals, Journal of the Mechanics and Physics of Solids, 40(3) (1992) 537-569.
[9]    J. Friedel, CXXX.On the linear work hardening mate of face-centred cubic single crystals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 46(382) (1955) 1169-1186.
[10]A. Seeger, CXXXII. The generation of lattice defects by moving dislocations, and its application to the temperature dependence of the flow-stress of FCC crystals, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 46(382) (1955) 11941217.
[11]A. Seeger, J. Diehl, S. Mader, H. Rebstock, Work-hardening and work-softening of facecentred cubic metal crystals Philosophical Magazine, 2(5) (1957) 323-350.
[12]P. Hirsch, T. Mitchell, Stage II work hardening in crystals, Canadian Journal of Physics, 45(2) (1967) 663-706.
[13]F.R.N. Nabarro, Work hardening and dynamical recovery of FCC metals in multiple glide, Acta metallurgica, 37(6) (1989) 1521-1546.
[14]D.K. Wilsdorf, The theory of dislocation-based crystal plasticity, Philosophical Magazine A, 79(4) (1999) 955-1008.
[15]K.M. Davoudi, J.J. Vlassak, Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study, Journal of Applied Physics 123(8) (2018).
[16]H. Mecking, U.F. Kocks, Kinetics of flow and strain-hardening, Acta Metallurgica 29(11) (1981) 1865-1875.
[17]Y. Estrin, H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta metallurgica, 32(1) (1984) 57-70.
[18]Y. Estrin, Dislocation-density-related constitutive modeling, Unified constitutive laws of plastic deformation, 1 (1996) 69-106.
[19]P.D. Ispánovity, I. Groma, G. Györgyi, F.F. Csikor, D. Weygand, Submicron plasticity: yield stress, dislocation avalanches, and velocity distribution, Physical review letters, 105(8) (2010) 085503.
[20]P.D. Ispánovity, Á. Hegyi, I. Groma, G. Györgyi, K. Ratter, D. Weygand, Average yielding and weakest link statistics in micronscale plasticity, Acta Materialia, 61(16) (2013) 6234-6245.
[21]K.M. Davoudi, L. Nicola, J.J. Vlassak, Dislocation climb in two-dimensional discrete dislocation dynamics, Journal of Applied Physics 111(10) (2012).
[22]S.S. Shishvan, L. Nicola, E. Van der Giessen, Bauschinger effect in unpassivated freestanding thin films, Journal of Applied Physics, 107(9) (2010) 093529.
[23]K. Danas, V.S. Deshpande, Plane-strain discrete dislocation plasticity with climb-assisted glide motion of dislocations, Modelling Simul. Mater.Science and Engineering, 21(4) (2013).
[24]D. Li, H. Zbib, X. Sun, M. Khaleel, Predicting plastic flow and irradiation hardening of iron single crystal with mechanism-based continuum dislocation dynamics, International Journal of Plasticity, 52 (2014) 3-17.
[25]K.M. Davoudi, L. Nicola, J.J. Vlassak, Bauschinger effect in thin metal films: Discrete dislocation dynamics study, Journal of Applied Physics 115(1) (2014).
[26]A. Roos, J.T.D. Hosson, E.V.d. Giessen, High-speed dislocations in high strain-rate deformations, Computational Materials Science 20(1) (2001) 19-27.
[27]D. Gómez-García, B. Devincre, L.P. Kubin, Dislocation patterns and the similitude principle: 2.5 D mesoscale simulations, Physical review letters, 96(12) (2006).
[28]P.J. Guruprasad, A.A. Benzerga, Size effects under homogeneous deformation of single crystals: a discrete dislocation analysis, Journal of the Mechanics and Physics of Solids, 56(1) (2008) 132-156.
[29]R. Madec, B. Devincre, L.P. Kubin, From dislocation junctions to forest hardening, Physical review letters, 89(25) (2002) 255508.
[30]R. Kumar, L. Nicola, E.V.d. Giessen, Density of grain boundaries and plasticity size effects: A discrete dislocation dynamics study, Materials Science and Engineering, 527(1-2) (2009) 7-15.
[31]E. Van der Giessen, Discrete Dislocation Plasticity Analysis of Cracks and Fracture, in: Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics, Springer, 2010, pp. 185-212.
[32]A. Vattré, B. Devincre, F. Feyel, R. Gatti, S. Groh, O. Jamond, A. Roos, Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: the discrete-continuous model revisited, Journal of the Mechanics and Physics of Solids 63 (2014) 491–505.
[33]L. P. Kubin and G. Canova, The modelling of dislocation patterns, Scr. Metall. Mater. 27(8) (1992) 957–962
[34]M. Sauzay and L. P. Kubin, Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals, Progress in Materials Science56(6), (2011(725–784.
[35]M. Hillert and J. Ågren, Extremum principles for irreversible processes, Acta Mater. 54(8), (2006(2063–2066.
[36]U. F. Kocks, A. S. Argon, and M. F. Ashby, Thermodynamics and Kinetics of Slip ( Pergamon Press Ltd., 1975(
[37]H. Mecking and U. F. Kocks, Kinetics of flow and strain-hardening, Acta Metall. 29, (1981( 1865–1875.
[38]Y. Estrin and H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metall. 32(I), (1984(57–70.
[39]D. Walgraef and E. C. Aifantis, On the formation and stability of dislocation patterns -I: One-dimensional considerations, International Journal of Engineering Science. 23, (1985( 1351–1358.
[40]H.A. Askari, A continuum dislocation dynamics framework for plasticity of polycrystalline materials, 2014.
[41]A. Acharya, J.L. Bassani, On non-local flow theories that preserve the classical structure of incremental boundary value problems, in: IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials, Springer, Dordrecht, 1996, pp. 3-9.
[42]C.S.Han, et al., Mechanism-based strain gradient crystal plasticity. II. Analysis. Journal of the Mechanics and Physics of Solids, 53)2005b( 1204–1222
[43]R.T. Hill, On discontinuous plastic states, with special reference to localized necking in thin sheets, Journal of the Mechanics and Physics of Solids, 1(1) (1952) 19-30.
[44]S. Stören, J.R. Rice, Localized necking in thin sheets, Journal of the Mechanics and Physics of Solids, 23(6) (1975) 421-441.
[45]A. Petek, T. Pepelnjak, An improved method for determining a forming limit diagram in the digital environment, Strojniski Vestnik, 51(6) (2005) 330-345.
[46]T. Pepelnjak, A. Petek, K. Kuzman, Analyses of the forming limit diagram in digital environment, Trans Tech Publications, 2005.
[47]A. Zajkani, A. Bandizaki, An efficient model for diffuse to localized necking transition in rate-dependent bifurcation analysis of metallic sheets, International Journal of Mechanical Sciences, 133 (2017) 794-803.
[48]A. Zajkani, A. Bandizaki, A path-dependent necking instability analysis of the thin substrate composite plates considering nonlinear reinforced layer effects, The International Journal of Advanced Manufacturing Technology, 95(1-4) (2018) 759-774.
[49]M.B. Bettaieb, F. Abed-Meraim, Investigation of localized necking in substrate-supported metal layers: comparison of bifurcation and imperfection analyses, International Journal of Plasticity, 65 (2015) 168-190.
[50]V. Tvergaard, K.L. Nielsen, Relations between a micro-mechanical model and a damage model for ductile failure in shear, Journal of the Mechanics and Physics of Solids, 58(9) (2010) 1243-1252.
[51]Z. Marciniak, K. Kuczyński, Limit strains in the processes of stretch-forming sheet metal, International Journal of Mechanical Sciences, 9(9) (1967) 609-620.
[52]T. Ohashi, M. Kawamukai, H.M. Zbib, A multiscale approach for modeling scaledependent yield stress in polycrystalline metals, International Journal of Plasticity, 23(5) (2007) .419-798
[53]N. Hansen, Hall–Petch relation and boundary strengthening, Scripta Materialia, 51(8) (2004) .608–108
[54]M.J. Serenelli, M.A. Bertinetti, J.W. Signorelli, Study of limit strains for FCC and BCC sheet metal using polycrystal plasticity, International Journal of Solids and Structures, 48(7-8) (2011) 1109–1119.
[55]R.E. Reed-Hill, and W.D. Robertson, Pyramidal slip in magnesium. Transaction of Metallurgical Soc.. AIME, 212(1958).
[56]I. Robertson, , The effect of hydrogen on dislocation dynamics. Engineering fracture mechanics, 68(6) (2001)671-692
[57]B.C. Wonsiewicz, and W.A. Backofen, Independent slip systems and ductility of hexagonal polycrystals. Transaction of Metallurgical Soc. AIME, 239, (1967)14221433.
[58]H.Yoshinaga, and R.Horiuchi, Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis. Transactions of the Japan Institute of Metals, 4(1) (1963)1-8.
[59]T.Obara, H., Yoshinga, and S.Morozumi, Æ-1123æ slip system in magnesium. Acta Metall, .358-548.)3791( 12
[60]F. Lavrentev, Y.A. Pokhil, Effect of „Forest” Dislocations in the {11-22}<11-23>system on hardening in Mg single crystals under basal slip, physica status solidi (a), 32(1) (1975) 227-232.
[61]A. Alankar, L.N. Mastorakos, D.P. Field, H.M. Zbib, Determination of dislocation interaction strengths using discrete dislocation dynamics of curved dislocations, Journal of engineering materials and technology, 134(2) (2012).
[62]F. Lavrentev, The type of dislocation interaction as the factor determining work hardening, Materials Science and Engineering, 46(2) (1980) 191-208.
[63]E. Nes, K. Marthinsen, Y. Brechet, On the mechanisms of dynamic recovery, Scripta Materialia 47(9) (2002) 607–611.
[64]R. Hill, J.R. Rice, Constitutive analysis of elastic-plastic crystals at arbitrary strain, Journal of the Mechanics and Physics of Solids, 20(6) (1972) 401-413.
[65]Y. Huang, A user-material subroutine incroporating single crystal plasticity in the ABAQUS finite element program, Harvard University, Cambridge, 1991.