توسعه مدل کوپل کاملا لاگرانژی مبتنی بر هیدرودینامیک ذرات هموار برای شبیه‌سازی اندرکنش سیال – سازه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مکانیک ،دانشگاه یزد

2 دانشکده مکانیک دانشگاه یزد

چکیده

در مطالعه حاضر، یک مدل عددی کوپل برای مسائل گذرای اندرکنش سیال - سازه الاستیک بر پایه روش هیدرودینامیک ذرات هموار پیشنهاد شده است. فرایند کوپل بین یک مدل سیال هیدرودینامیک ذرات هموار تراکم ناپذیر و مدل سازه کاملاً لاگرانژی صورت می‌گیرد. در این روش، با توجه به اهمیت توزیع مناسب ذرات برای شبیه سازی دقیق و پایدار و تولید یک میدان فشار بدون اغتشاش، یک الگوریتم جدید برای انتقال ذرات جهت منظم سازی توزیع ذرات توسعه داده شده است. با توجه به ناکامل بودن دامنه پوشش کرنلی در سطح آزاد و خطاهای موجود در روش انتقال ذرات سنتی، این الگوریتم به عنوان یک راه حل مناسب برای مرزهای ناپیوسته همچون سطح آزاد، بدون نیاز به تنظیم پارامتر جدید، قادر به ایجاد بهینه توزیع ذرات می‌باشد. عملکرد مدل سازه کاملاً لاگرانژی با استفاده از شبیه سازی یک مسئله دینامیکی مورد ارزیابی قرار گرفت. قابلیت مدل پیشنهادی با شبیه سازی چند نمونه از مسائل کاربردی در اندرکنش سیال- سازه بررسی شد و نتایج حاصل با نتایج تحلیلی ، آزمایشگاهی و نتایج عددی مقایسه شد. تطابق نتایج ارائه شده در مطالعه حاضر با داده‌های دیگر محققان، توانایی این مدل پیشنهادی را در شبیه سازی پدیده اندرکنش سیال- سازه نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of A Fully Lagrangian Smoothed Particle Hydrodynamics -Based Coupled Method for Simulation of Fluid– Structure Interaction

نویسندگان [English]

  • Amir Masoud Salehizadeh 1
  • Ali Reza Shafiei 2
1 Department of Mechanical Engineering,Yazd University
2 Department of Mechanical Engineering,Yazd University
چکیده [English]

In this research, an enhanced computational coupling method is proposed for the transient problems of incompressible fluid-elastic structure interaction based on the smoothed particle hydrodynamics method. The coupling process is conducted between an incompressible smoothed particle hydrodynamics fluid model and a totally Lagrangian smoothed particle hydrodynamics structural model. In the incompressible smoothed particle hydrodynamics method, due to the importance of smoothing particle distribution for accurate and stable simulations with noise-free pressure field, a new scheme for particle shifting has been proposed to regulate particle distribution. In contrast to numerical errors at the free surface in traditional particle shifting algorithm, this proposed algorithm as a suitable treatment for discontinuous boundaries such as the free surface presents an optimized particle shifting scheme without need to adjust the new parameters. The proposed numerical coupling method was examined  by simulating several benchmarks in fluid-structure interaction and the results were compared with experimental and numerical results. The considered problems of fluid-structure interaction in this paper include the dam-breaking with an elastic gate and the deflection of an elastic obstacle due to fluid sloshing. The agreement between the presented results with the literature data shows the ability of the proposed model to simulate the phenomenon of fluid-structure interaction.

کلیدواژه‌ها [English]

  • Incompressible Smoothed Particle Hydrodynamics
  • Fluid-Structure Interaction
  • Totally Lagrangian SPH
  • Optimized Particle Shifting Scheme
[1] U. Langer, H. Yang, Numerical simulation of fluid– structure interaction problems with hyperelastic models: A monolithic approach, Mathematics and Computers in Simulation, 145 (2018) 186-208.
[2]   J. Nunez-Ramirez, J.C. Marongiu, M. Brun, A.Combescure, A partitioned approach for the coupling of SPH and FE methods for transient nonlinear FSI problems with incompatible time-steps, International Journal for Numerical Methods in Engineering, 109(10) (2017) 1391-1417.
[3]  Y. He, A.E. Bayly, A. Hassanpour, Coupling CFD- DEM with dynamic meshing: A new approach for fluid-structure interaction in particle-fluid flows, Powder Technology, 325 (2018) 620-631.
[4]  H.  Gotoh,  T.   Sakai,  Key  issues  in  the  particle method for computation of wave breaking, Coastal Engineering, 53(2-3) (2006) 171-179.
[5]   S.-C. Hwang, A. Khayyer, H. Gotoh, J.-C. Park, Development of a fully lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems, Journal of Fluids and Structures, 50 (2014) 497-511.
[6]  C. Antoci, M. Gallati, S. Sibilla, Numerical simulation of fluid–structure interaction by SPH, Computers & Structures, 85(11-14) (2007) 879-890.
[7]  R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non- spherical stars, Monthly notices of the royal astronomical society, 181(3) (1977) 375-389.
[8]  W. Hu, G. Guo, X.  Hu,  D.  Negrut,  Z.  Xu,  W.  Pan, A consistent spatially adaptive smoothed particle hydrodynamics method for fluid–structure interactions, Computer Methods in Applied Mechanics and Engineering, 347 (2019) 402-424.
[9] E.-S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence, P. Stansby, Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method, Journal of computational Physics, 227(18) (2008) 8417-8436.
[10]  M. Rezavand, M. Taeibi-Rahni, W. Rauch, An ISPH scheme for numerical simulation of multiphase flows with complex interfaces and high density ratios, Computers & Mathematics with Applications, 75(8) (2018) 2658-2677.
[11]   A. Rafiee, K.P. Thiagarajan, An SPH projection method for simulating fluid-hypoelastic structure interaction, Computer Methods in Applied Mechanics and Engineering, 198(33-36) (2009) 2785-2795.
[12]  A. Khayyer, H. Gotoh, H. Falahaty, Y. Shimizu, An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions, Computer Physics Communications, (2018).
[13]   N. Tsuruta, A. Khayyer, H. Gotoh, A short note on dynamic stabilization of moving particle semi-implicit method, Computers & Fluids, 82 (2013) 158-164.
[14]  J. Gray, J. Monaghan, R. Swift, SPH elastic dynamics, Computer methods in applied mechanics and engineering, 190(49-50) (2001) 6641-6662.
[15]  T. Belytschko, Y. Guo, W. Kam Liu, S. Ping Xiao, A unified stability analysis of meshless particle methods, International Journal for Numerical Methods in Engineering, 48(9) (2000) 1359-1400.
[16] J. Lin, H. Naceur, D. Coutellier, A. Laksimi, Geometrically nonlinear analysis of two-dimensional structures using an improved smoothed particle hydrodynamics method, Engineering Computations, 32(3) (2015) 779-805.
[17] E. Walhorn, A. Kölke, B. Hübner, D. Dinkler, Fluid–structure coupling within a monolithic model involving free surface flows, Computers & structures, 83(25-26) (2005) 2100-2111.
[18] S. Idelsohn, J. Marti, A. Souto-Iglesias, E. Onate, Interaction between an elastic structure and free- surface flows: experimental versus numerical comparisons using the PFEM, Computational Mechanics, 43(1) (2008) 125-132.
[19] H. Gotoh, T. Shibahara, T. Sakai, Sub-particle-scale turbulence model for the MPS method-Lagrangian flow model for hydraulic engineering, Advanced methods in computational fluid dynamics, 9 (2001) 339-347.
[20] G.-R. Liu, M.B. Liu, Smoothed particle hydrodynamics: a meshfree particle method, World Scientific, 2003.
[21] J.P. Morris, P.J. Fox, Y. Zhu, Modeling low Reynolds number incompressible flows using SPH, Journal of computational physics, 136(1) (1997) 214-226.
[22] G. Oger, M. Doring, B. Alessandrini,  P.  Ferrant, An improved SPH method: Towards higher order convergence, Journal of Computational Physics, 225(2) (2007) 1472-1492.
[23] S.J. Cummins, M. Rudman, An SPH projection method, Journal of computational physics, 152(2) (1999) 584-607.
[24] S. Shao, E.Y. Lo, Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Advances in water resources, 26(7) (2003) 787-800.
[25]  X. Hu, N.A. Adams, An incompressible multi-phase SPH method, Journal of computational physics, 227(1) (2007) 264-278.
[26] R. Xu, P. Stansby, D. Laurence, Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach, Journal of computational Physics, 228(18) (2009) 6703-6725.
[27]  S. Lind, R. Xu, P. Stansby, B.D. Rogers, Incompressible smoothed  particle  hydrodynamics for free-surface flows: A generalised  diffusion- based algorithm for stability and validations for impulsive flows and propagating waves, Journal of Computational Physics, 231(4) (2012) 1499-1523.
[28]  A. Skillen, S. Lind, P.K. Stansby, B.D. Rogers, Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body–water slam and efficient wave–body interaction, Computer Methods in Applied Mechanics and Engineering, 265 (2013) 163-173.
[29]  L.D. Landau, E.M. Lifshitz, Theory of Elasticity: Course of Theoretical Physics, Pergamon Press, Oxford, 1986.