[1] U. Langer, H. Yang, Numerical simulation of fluid– structure interaction problems with hyperelastic models: A monolithic approach, Mathematics and Computers in Simulation, 145 (2018) 186-208.
[2] J. Nunez-Ramirez, J.C. Marongiu, M. Brun, A.Combescure, A partitioned approach for the coupling of SPH and FE methods for transient nonlinear FSI problems with incompatible time-steps, International Journal for Numerical Methods in Engineering, 109(10) (2017) 1391-1417.
[3] Y. He, A.E. Bayly, A. Hassanpour, Coupling CFD- DEM with dynamic meshing: A new approach for fluid-structure interaction in particle-fluid flows, Powder Technology, 325 (2018) 620-631.
[4] H. Gotoh, T. Sakai, Key issues in the particle method for computation of wave breaking, Coastal Engineering, 53(2-3) (2006) 171-179.
[5] S.-C. Hwang, A. Khayyer, H. Gotoh, J.-C. Park, Development of a fully lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems, Journal of Fluids and Structures, 50 (2014) 497-511.
[6] C. Antoci, M. Gallati, S. Sibilla, Numerical simulation of fluid–structure interaction by SPH, Computers & Structures, 85(11-14) (2007) 879-890.
[7] R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non- spherical stars, Monthly notices of the royal astronomical society, 181(3) (1977) 375-389.
[8] W. Hu, G. Guo, X. Hu, D. Negrut, Z. Xu, W. Pan, A consistent spatially adaptive smoothed particle hydrodynamics method for fluid–structure interactions, Computer Methods in Applied Mechanics and Engineering, 347 (2019) 402-424.
[9] E.-S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence, P. Stansby, Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method, Journal of computational Physics, 227(18) (2008) 8417-8436.
[10] M. Rezavand, M. Taeibi-Rahni, W. Rauch, An ISPH scheme for numerical simulation of multiphase flows with complex interfaces and high density ratios, Computers & Mathematics with Applications, 75(8) (2018) 2658-2677.
[11] A. Rafiee, K.P. Thiagarajan, An SPH projection method for simulating fluid-hypoelastic structure interaction, Computer Methods in Applied Mechanics and Engineering, 198(33-36) (2009) 2785-2795.
[12] A. Khayyer, H. Gotoh, H. Falahaty, Y. Shimizu, An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions, Computer Physics Communications, (2018).
[13] N. Tsuruta, A. Khayyer, H. Gotoh, A short note on dynamic stabilization of moving particle semi-implicit method, Computers & Fluids, 82 (2013) 158-164.
[14] J. Gray, J. Monaghan, R. Swift, SPH elastic dynamics, Computer methods in applied mechanics and engineering, 190(49-50) (2001) 6641-6662.
[15] T. Belytschko, Y. Guo, W. Kam Liu, S. Ping Xiao, A unified stability analysis of meshless particle methods, International Journal for Numerical Methods in Engineering, 48(9) (2000) 1359-1400.
[16] J. Lin, H. Naceur, D. Coutellier, A. Laksimi, Geometrically nonlinear analysis of two-dimensional structures using an improved smoothed particle hydrodynamics method, Engineering Computations, 32(3) (2015) 779-805.
[17] E. Walhorn, A. Kölke, B. Hübner, D. Dinkler, Fluid–structure coupling within a monolithic model involving free surface flows, Computers & structures, 83(25-26) (2005) 2100-2111.
[18] S. Idelsohn, J. Marti, A. Souto-Iglesias, E. Onate, Interaction between an elastic structure and free- surface flows: experimental versus numerical comparisons using the PFEM, Computational Mechanics, 43(1) (2008) 125-132.
[19] H. Gotoh, T. Shibahara, T. Sakai, Sub-particle-scale turbulence model for the MPS method-Lagrangian flow model for hydraulic engineering, Advanced methods in computational fluid dynamics, 9 (2001) 339-347.
[20] G.-R. Liu, M.B. Liu, Smoothed particle hydrodynamics: a meshfree particle method, World Scientific, 2003.
[21] J.P. Morris, P.J. Fox, Y. Zhu, Modeling low Reynolds number incompressible flows using SPH, Journal of computational physics, 136(1) (1997) 214-226.
[22] G. Oger, M. Doring, B. Alessandrini, P. Ferrant, An improved SPH method: Towards higher order convergence, Journal of Computational Physics, 225(2) (2007) 1472-1492.
[23] S.J. Cummins, M. Rudman, An SPH projection method, Journal of computational physics, 152(2) (1999) 584-607.
[24] S. Shao, E.Y. Lo, Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Advances in water resources, 26(7) (2003) 787-800.
[25] X. Hu, N.A. Adams, An incompressible multi-phase SPH method, Journal of computational physics, 227(1) (2007) 264-278.
[26] R. Xu, P. Stansby, D. Laurence, Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach, Journal of computational Physics, 228(18) (2009) 6703-6725.
[27] S. Lind, R. Xu, P. Stansby, B.D. Rogers, Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion- based algorithm for stability and validations for impulsive flows and propagating waves, Journal of Computational Physics, 231(4) (2012) 1499-1523.
[28] A. Skillen, S. Lind, P.K. Stansby, B.D. Rogers, Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body–water slam and efficient wave–body interaction, Computer Methods in Applied Mechanics and Engineering, 265 (2013) 163-173.
[29] L.D. Landau, E.M. Lifshitz, Theory of Elasticity: Course of Theoretical Physics, Pergamon Press, Oxford, 1986.