بررسی انتقال حرارت سیالات غیرنیوتونی شبه‌پلاستیک در مبدل‌های حرارتی متخلخل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 گروه مهندسی مکانیک، واحد دزفول، دانشگاه آزاد اسلامی، دزفول، ایران

چکیده

در این مقاله انتقال حرارت جابجایی طبیعی رایلی-بنارد سیالات غیرنیوتونی شبه‌پلاستیک در مبدل حرارتی لوله‌ای که دیواره‌ی سمت چپ آن از لایه‌ی متخلخل مشخص با ضخامت مشخص پوشیده شده است برای حالت ناپایدار و آرام به صورت عددی بررسی شده است. دیواره‌ی پایینی در دمای ثابت Th و دیواره‌ی بالایی در دمایTc که (Th>Tc) قرار دارد. دیواره‌ی سمت چپ و راست عایق هستند. معادلات حاکم بر مسئله پس از بی‌بعد شدن، به روش المان محدود به صورت همزمان حل شده است و سپس صحت نتایج در مقایسه با پژوهش‌های پیشین ارزیابی شده است. نتایج نشان می‌دهند که در رایلی‌های بزرگ ‌( 105Ra=) به دلیل غالب بودن انتقال حرارت جابه‌جایی طبیعی نسبت به انتقال حرارت هدایت، ناسلت متوسط با سرعت قابل توجهی افزایش می‌یابد. همچنین در اعداد دارسی کوچک (4-10=Da) میزان نفوذپذیری جریان بسیار کم است و ماهیت جریان به گونه‌ای تغییر می‌کند که باعث کاهش عملکرد حرارتی جریان جابجایی طبیعی می‌شود. نتایج نشان می‌دهد که با کاهش شاخص پاورلا دمای بی‌بعد کاهش یافته و کمترین دمای بی‌بعد برای کمترین شاخص پاورلا به دست می‌آید. از سوی دیگر، با افزایش شاخص پاورلا در یک رایلی ثابت و گذشت زمان، افزایش انتقال حرارت طبیعی اتفاق می‌افتد. همچنین عدد رایلی برای شروع جابه‌جایی طبیعی با افزایش شاخص پاورلا کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Heat Transfer of Non-Newtonian Pseudo-Plastic Fluids in Porous Heat Exchangers

نویسندگان [English]

  • Amin Reza Noghreabadi 1
  • kasra ayoubi ayoubloo 1
  • Reza Bahoosh Kazerooni 1
  • Mohammad Ghalambaz 2
1 Mechanical Engineering Department, Faculty of Engineering, Shahid Chamran of Ahvaz University, Ahvaz, IRAN
2 Assistant professor, Department of Mechanical Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran
چکیده [English]

In this paper, the natural heat transfer of Rayleigh-Benard's non-Newtonian Pseudo-Plastics fluid in a tube heat exchanger with its left wall lined with a porous layer of a thickness l is considered numerically for an unstable state of laminar. The lower wall of the heat exchanger is at constant temperature Thand the upper wall at Tc temperature (Th>Tc). The walls are left and right insulated. The dimensionless governing equations are solved by the finite element method and the accuracy of the results is compared with previous studies. The results show that, in a large Rayleigh number, the average Nusselt number increases due to the fact that the natural heat transfer is more than conduction heat transfer. Also, in small Darcy numbers, the flow permeability is very low which causes reduce natural heat transfer convection. The results show that by decreasing the Power-law index, the non-dimensional temperature is reduced and the lowest non-dimensional temperature is obtained for the lowest Power-law index. On the other hand, with the increase of the Power-law index in a constant Rayleigh number and the passage of time, the increase of natural heat transfer occurs in the tube. Also, the Rayleigh number decreases with the increase of the Power-law index to start the natural convection in the heat exchanger.

کلیدواژه‌ها [English]

  • Rayleigh-Benard convection
  • Non-Newtonian fluid
  • Pseudo-plastic
  • Heat exchanger
  • Porous layer
[1]   R.P. Chhabra, J.F. Richardson, Non-Newtonian flow in the process industries: fundamentals and engineering applications, Butterworth-Heinemann, 1999.
[2]  R.L. Pigford, Non-isothermal flow and heat transfer inside vertical tubes, American Institute of Chemical Engineers, 1953.
[3]  G.B. Kim, J.M. Hyun, H.S. Kwak, Transient buoyant convection of a power-law non-Newtonian fluid in an enclosure, International Journal of Heat and Mass Transfer, 46(19) (2003) 3605-3617.
[4]  K.R. Rajagopal, T.-Y. Na, Natural convection flow of a non-Newtonian fluid between two vertical flat plates, Acta Mechanica, 54(3-4) (1985) 239-246.
[5]  A. Barletta, On fully-developed mixed convection and flow reversal of a power-law fluid in a vertical channel, International communications in heat and mass transfer, 26(8) (1999) 1127-1137.
[6]  G. Degan, P. Vasseur, Aiding mixed convection through a vertical anisotropic porous channel with oblique principal axes, International journal of engineering science, 40(2) (2002) 193-209.
[7]   G. Lorenzini, C. Biserni, Numerical investigation on mixed convection in a non-Newtonian fluid inside a vertical duct, International journal of thermal sciences, 43(12) (2004) 1153-1160.
[8]  F. Kamışlı, Laminar flow of a non-Newtonian fluid in channels with wall suction or injection, International journal of engineering science, 44(10) (2006) 650-661.
[9]  B.C. Lyche, R.B. Bird, The Graetz-Nusselt problem for a power-law non-Newtonian fluid, Chemical Engineering Science, 6(1) (1956) 35-41.
[10] A. Metzner, R. Vaughn, G. Houghton, Heat transfer to non‐newtonian fluids, AIChE Journal, 3(1) (1957) 92-100.
[11] F. Popovska, W. Wilkinson, Laminar heat transfer to Newtonian and non-Newtonian fluids in tubes, Chemical Engineering Science, 32(10) (1977) 1155-1164.
[12] S.D. Joshi, A. Bergles, Experimental study of laminar heat transfer to in-tube flow of non-Newtonian fluids, Journal of heat transfer, 102(3) (1980) 397-401.
[13]  I. Filkova, A. Lawal, B. Koziskova, A. Mujumdar, Heat transfer to a power-law fluid in tube flow: Numerical and experimental studies, Journal of food engineering, 6(2) (1987) 143-151.
[14]  J.E. Porter, Heat transfer at low Reynolds number, Institution of Chemical Engineers, 1971.              
[15]  Y.I. Cho, J.P. Harnett, Non-Newtonian fluids in circular pipe flow, in:  Advances in heat transfer, Elsevier, 1982, pp. 59-141.
[16]  T.F.Jr. Irvine, and J. Karni, Handbook of single phase convective heat transfer, John Wiley, New York, (1987).
[17]  S. Kakaç, R.K. Shah, W. Aung, Handbook of single-phase convective heat transfer, (1987).
[18]  J.P. Hartnett, Y.I. Cho, G.A. Greene, T.F. Irvine, Advances in heat transfer, Academic Press, 2000.
[19] A. McKillop, Heat transfer for laminar flow of non-Newtonian fluids in entrance region of a tube, International Journal of Heat and Mass Transfer, 7(8) (1964) 853-862.
[20] R. Siegel, E. Sparrow, T. Hallman, Steady laminar heat transfer in a circular tube with prescribed wall heat flux, Applied Scientific Research, Section A, 7(5) (1958) 386-392. 
[21] W.M. Rohsenow, H.Y. Choi, Heat, mass, and momentum transfer, Prentice hall, 1961.
[22]  G.F. Al-Sumaily, A. Nakayama, J. Sheridan, M.C. Thompson, The effect of porous media particle size on forced convection from a circular cylinder without assuming local thermal equilibrium between phases, International Journal of Heat and Mass Transfer, 55(13-14) (2012) 3366-3378. 
[23]  M. Layeghi, A. Nouri-Borujerdi, Fluid flow and heat transfer around circular cylinders in the presence and no-presence of porous media, Journal of Porous Media, 7(3) (2004). 
[24]  S. Rashidi, A. Tamayol, M.S. Valipour, N. Shokri, Fluid flow and forced convection heat transfer around a solid cylinder wrapped with a porous ring, International Journal of Heat and Mass Transfer, 63 (2013) 91-100.
[25] M.-H. Sun, G.-B. Wang, X.-R. Zhang, Rayleigh-Bénard convection of non-Newtonian nanofluids considering Brownian motion and thermophoresis, International Journal of Thermal Sciences, 139 (2019) 312-325. 
[26]  S. Mukherjee, A. Gupta, R. Chhabra, Laminar forced convection in power-law and Bingham plastic fluids in ducts of semi-circular and other cross-sections, International Journal of Heat and Mass Transfer, 104 (2017) 112-141. 
[27] H. Zhang, Y. Kang, T. Xu, Study on Heat Transfer of Non-Newtonian Power Law Fluid in Pipes with Different Cross Sections, Procedia Engineering, 205 (2017) 3381-3388.
[28] D.A. Nield, A. Bejan, Convection in porous media, Springer, 2006.               
[29] F. P. Incropera, et al. Introduction to heat transfer, John Wiley & Sons, 2011.
[30] J.N. Reddy, An introduction to the finite element method, New York, 1993.
[31] T. Basak, S. Roy, A. Balakrishnan, Effects of thermal boundary conditions on natural convection flows within a square cavity, International Journal of Heat and Mass Transfer, 49(23-24) (2006) 4525-4535.            
[32] F. Sun, Investigations of smoothed particle hydrodynamics method for fluid-rigid body interactions, University of Southampton, 2013.              
[33] T. Basak, S. Roy, A. Singh, A. Balakrishnan, Natural convection flows in porous trapezoidal enclosures with various inclination angles, International Journal of Heat and Mass Transfer, 52(19-20) (2009) 4612-4623.               
[34] R. Kumar, M. Kalam, Laminar thermal convection between vertical coaxial isothermal cylinders, International journal of heat and mass transfer, 34(2) (1991) 513-524.               
[35] M.H. Matin, W.A. Khan, Laminar natural convection of non-Newtonian power-law fluids between concentric circular cylinders, International Communications in Heat and Mass Transfer, 43 (2013) 112-121.
[36] N. Ouertatani, N.B. Cheikh, B.B. Beya, T. Lili, Numerical simulation of two-dimensional Rayleigh–Bénard convection in an enclosure, Comptes Rendus Mécanique, 336(5) (2008) 464-470.