[1] A. Krishnan., E. Dujardin., T.W. Ebbesen., P.N. Yianilos., M.M.J. Treacy, “Young’s modulus of single-walled nanotubes”, Phys. Rev. B, vol, 58, pp. 14013– 14019, 1998.
[2] O. Lourie., H.D. Wagner, “Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy”, J. Mater. Res, vol, 13, pp. 2418– 2422, 1998.
[3] B.I. Yakobson., P. Avouris, “Mechanical properties of carbon nanotubes”, In: Dresselhaus, M.S., Dresselhaus, G., Avouris, P. (Eds.), Carbon Nanotubes. Topics in Applied Physics, vol, 80, pp. 287– 329, 2001.
[4] D. Qian., G.J. Wagner., W.K. Liu., M.F. Yu., R.S. Ruoff, “Mechanics of carbon nanotubes”, Appl. Mech. Rev, vol, 55, pp. 495– 533, 2002.
[5] D.W. Brenner., O.A. Shenderova., J.A. Harrison., S.J. Stuart., B. Ni., S.B. Sinnott, “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons”, J. Phys.- Condens. Matter, vol, 14, pp. 783– 802, 2002.
[6] D.W. Brenner, “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films”, Phys Rev. B, vol, 42, pp. 9458– 9471, 1990.
[7] G.G. Samsonidze., B.I. Yakobson, “Energetics of Stone–Wales defects in deformations of monoatomic hexagonal layers”, Comput. Mater. Sci, vol, 23, pp. 62– 72, 2002.
[8] Y. Huang., J. Wu., K.C. Hwang, “Thickness of
graphene and single-wall carbon nanotubes”, Phys. Rev. B, vol, 74, pp. 245- 413, 2006.
[9] C.Q. Ru, “Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium”, J. Mech. Phys. Solids, vol, 49, pp. 1265– 1279 , 2001.
[10] Z. Tu., Z. Ou-Yang, “Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number”, Phys. Rev. B, vol, 65, pp. 233- 407, 2002.
[11] A. Pantano., D.M. Parks., M.C. Boyce, “Mechanics of deformation of single- and multi-wall carbon nanotubes”, J. Mech. Phys. Solids, vol, 52, pp. 789– 821, 2004.
[12] P. Zhang., Y. Huang., H. Gao., K.C. Hwang, “Fracture nucleation in single-wall carbon nanotubes under tension: a continuum analysis incorporating interatomic potentials”, J. Appl. Mech, vol, 69, pp. 454– 458, 2002.
[13] P. Zhang., Y.G. Huang., P.H. Geubelle., K.C. Hwang, “On the continuum modeling of carbon nanotubes”, Acta Mech. Sin, vol, 18, pp. 528– 536, 2002.
[14] P. Zhang., Y. Huang., P.H. Geubelle., P.A. Klein., K.C. Hwan, “The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials”, Int. J. Solids Struct, vol, 39, pp. 3893– 3906, 2002.
[15] H. Jiang., P. Zhang., B. Liu., Y. Huang., P.H. eubelle., H. Gao., K.C. Hwang, “The effect of nanotube radius on the constitutive model for carbon nanotubes”, Comput. Mater. Sci, vol, 28, pp. 429– 442, 2003.
[16] P. Zhang., H. Jiang., Y. Huang., P.H. Geubelle., K.C. Hwang, “An atomistic-based continuum theory for carbon nanotubes: analysis of fracture nucleation”, J. Mech Phys. Solids, vol, 52, pp. 977– 998, 2004.
[17] J. Song., H. Jiang., D.L. Shi., X.Q. Feng., Y. Huang., M.F. Yu., K.C. Hwang., “Stone– Wales transformation: precursor of fracture in carbon nanotubes”, Int. J. Mech. Sci, vol, 48, pp. 1464– 1470, 2006.
[18] H.W. Zhang., K. Cai., L. Wang., “Deformation of single- walled carbon nanotubes under large axial strains”, Mater. Lett, vol, 62, pp. 3940- 3943, 2008.
[19] X. Wang., X. Guo., “Numerical simulation for finite deformation of single-walled carbon nanotubes at finite temperature using temperature-related higher order Cauchy-Born rule based quasi-continuum model”, Compt. Mater. Sci, vol, 55, pp. 273- 283, 2012.
[20] H. Shima., S. Ghosh., M. Arroyo., K. Liboshi., M. Sato., “Thin-shell theory based analysis of radially pressurized multiwall carbon nanotubes”, Compt. Mater. Sci, vol, 52, pp. 90- 94, 2012.
[21] B.J. Cox., J.M. Hill., “Exact and approximate geometric parameters for carbon nanotubes incorporating curvature”, Carbon, vol, 45, pp. 1453, 2007.
[22] Y.C. Fung., “A first course in continuum mechanics”. Englewood Cliffs, N.J., Prentice-Hall, Inc., 1977.
[23] M. Born., K. Huang, “Dynamical Theory of Crystal Lattices”, Oxford University Press, Oxford, 1954.
[24] B.I. Yakobson., C.J. Brabec., J. Bernholc, “Nanomechanics of carbon tubes: instabilities beyond linear response”, Phys. Rev. Lett, vol, 76, pp. 2511– 2514, 1996.
[25] Q. Lu., M. Arroyo.,R, Huang, “Elastic bending modulus of monolayer graphene”, J. Phys. D: Appl. Phys, vol, 42, pp. 102002- 102022, 2009.
[26] K.M. Liew., X.Q. He., C.H. Wong, “On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation”, Acta Materialia, vol, 52, pp. 2521- 2527, 2004.
[27] J. Wu., K.C. Hwang., Y. Huang., “An atomistic-based finite-deformation shell theory for single-wall carbon nanotubes”, J. Mech. Phys. Solids, vol, 56, pp. 279- 292, 2008.
[28] S. Xiao., W. Hou., “Studies of size effects on carbon nanotubes, mechanical properties by using different potential functions”, Fullerenes, Nanotubes and carbon nanostructures, vol, 14, pp. 9- 16, 2006.