تحلیل کمانش پوسته ساندویچی مخروطی با هسته هدفمند متخلخل در شرایط حرارتی مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی صنایع و مکانیک، دانشگاه آزاد اسلامی، واحد قزوین، قزوین، ایران

2 استادیار، دانشکده مهندسی صنایع و مکانیک، دانشگاه آزاد اسلامی، واحد قزوین، قزوین، ایران

3 استادیار، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد تاکستان، تاکستان، ایران

چکیده

در این تحقیق، برای اولین بار، با در نظر گرفتن انعطاف‌پذیری هسته در تئوری مرتبه بالای پوسته‌های ساندویچی، رفتار کمانشی پوسته ساندویچی مخروطی ناقص که شامل هسته هدفمند متخلخل و رویه‌های همگن است، در توزیع دماهای مختلف بررسی می‌شود. از مواد با خواص وابسته به دما در هسته و رویه‌ها استفاده می‌گردد و برای مدل‌سازی تغییر تدریجی خواص مواد هدفمند از قانون توانی که با در نظر گرفتن دو مدل توزیع تخلخل اصلاح می‌شود، استفاده می‌شود. به کمک اصل مینیمم انرژی پتانسیل و با در نظر گرفتن تنش‌های درون صفحه‌ای هسته و رویه‌ها و کرنش غیرخطی ون کارمن هم برای تنش مکانیکی و هم تنش حرارتی، معادلات تعادل سازه در معرض بار فشاری درون صفحه‌ای محوری به دست می‌آیند. از روش گلرکین برای حل معادلات حاکم در شرایط تکیه‌گاهی ساده، دو سرگیردار و گیردار-آزاد بهره برده می‌شود. برای بررسی اثر تغییر دما بر روی سازه، توزیع دما به صورت یکنواخت، خطی و غیرخطی در نظر گرفته می‌شود. برای صحت‌سنجی روش، نتایج تحلیل کار حاضر در حالات خاص با مقالات دیگر و همچنین با نتایج بدست آمده از نرم‌افزار آباکوس مقایسه می‌شود. تغییرات بار بحرانی بی‌بعد نسبت به تغییرات هندسی سازه، تغییرات دما، خواص مواد و تخلخل بررسی خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Buckling Analysis of Truncated Conical Sandwich Panel with Porous Functionally Graded Core in Different Thermal Conditions

نویسندگان [English]

  • Mohsen Rahmani 1
  • Younes Mohammadi 2
  • Farshad Kakavand 3
  • Hamed Raeisifard 2
1 Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University Qazvin, Iran
2 - Department of Mechanical Engineering, Islamic Azad University, Qazvin, Iran
3 Department of Mechanical Engineering, Takestan Branch, Islamic Azad University, Takestan, Iran
چکیده [English]

In this paper, for the first time, by considering the flexibility of the core in the high order theory of sandwich shells, the buckling behavior of the truncated conical sandwich shells which include a temperature-dependent porous functionally graded core and two temperature-dependent homogeneous face sheets are investigated in various thermal conditions. The power-law rule which modified by considering the two types of porosity volume fractions is applied to model the gradual variation of functionally graded materials. By applying the principle of minimum potential energy, considering the in-plane stresses in the core and faces, and nonlinear von-Karman strains for both mechanical and thermal stresses, the governing equations are obtained under the axial in-plane compressive loads. A Galerkin procedure is used to solve the equations in a simply supported, clamped and clamped-free boundary conditions. Uniform, linear and nonlinear temperature distributions are used to model the effect of the temperature changing in the sandwich shell. To verify the results of these work, they are compared with finite element method results obtained by ABAQUS software and for special cases with the results in literature. Critical load variations are surveyed versus the temperature changing, geometrical effects, porosities, and some others in the numerical examples.

کلیدواژه‌ها [English]

  • High order sandwich shell theory
  • Conical sandwich
  • Functionally graded core
  • Porosity
  • Temperature distribution
[1]  Y.Q. Wang, Y.H. Wan, Y.F. Zhang, Vibrations of longitudinally traveling functionally graded material plates with porosities, European Journal of Mechanics-A/ Solids, 66 (2017) 55-68.
[2]  A. Rezaei, A. Saidi, M. Abrishamdari, M.P. Mohammadi, Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: an analytical approach, Thin-Walled Structures, 120 (2017) 366-377.
[3]  Y. Liu, S. Su, H. Huang, Y. Liang, Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane, Composites Part B: Engineering, 168 (2019) 236-242.
[4] A. Ghorbanpour Arani, M. Khani, Z. Khoddami Maraghi, Dynamic analysis of a rectangular porous plate resting on an elastic foundation using high-order shear deformation theory, Journal of Vibration and Control, 24(16) (2018) .3173-8963
[5] D. Chen, J. Yang, S. Kitipornchai, Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method, Archives of Civil and Mechanical Engineering, 19(1) (2019) 157-170.
[6]  M. Shaban, A. Alibeigloo, Three-dimensional elasticity solution for sandwich panels with corrugated cores by using energy method, Thin-Walled Structures, 119 (2017) 404-411.
[7]   J.-Y. Yeh, L.-W. Chen, Finite element dynamic analysis of orthotropic sandwich plates with an electrorheological fluid core layer, Composite structures, 78(3) (2007) 368-376.
[8] J. Mantari, M. Ore, Free vibration of single and sandwich laminated composite plates by using a simplified FSDT, Composite Structures, 132 (2015) 952-959.
[9] J. Zhao, K. Choe, C. Shuai, A. Wang, Q. Wang, Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions, Composites Part B: Engineering, 160 (2019) 225-240.
[10] H. Sepiani, A. Rastgoo, F. Ebrahimi, A.G. Arani, Vibration and buckling analysis of two-layered functionally graded cylindrical shell, considering the effects of transverse shear and rotary inertia, Materials & Design, 31(3) (2010) 1063-1069.
[11]  A.G. Arani, M. Pourjamshidian, M. Arefi, M. Arani, Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory, Structural Engineering and Mechanics, 69(4) (2019) 439-455.
[12]M.F. Caliri Jr, A.J. Ferreira, V. Tita, A review on plate and shell theories for laminated and sandwich structures highlighting the Finite Element Method, Composite Structures, 156 (2016) 63-77.
[13] A. Mozaffari, M. Karami, A. Azarnia, Effects of SMA Wires Free Vibration of Shape Memory Sandwich Panel, Amirkabir Journal of Mechanical Engineering, ( ,04-92 )3102( )2(44in Persian).
[14] B. Eftari, S. Khalili, A. Jafari, K. MalekZadeh, Analysis of Free Vibration of Sandwich Panels Based on Improved High-order Sandwich Panel Theory, Amirkabir Journal of Mechanical Engineering, 43(2) (2012) 27-33, (in Persian).
[15] K.M. Fard, G. Payganeh, M. kardan, Dynamic response of sandwich panels with flexible cores and elastic foundation subjected to low velocity impact, Amirkabir Journal of Mechanical Engineering, 45(2) (2013) 27-42, (in Persian).
[16] Y. Mohammadi, S. Khalili, K. Malekzadeh Fard, Low velocity impact analysis of sandwich plates with functionally graded face sheets, Mechanics of Advanced Materials and Structures, 23(4) (2016) 363-374.
[17] Y. Mohammadi, S.R. Khalili, Effect of geometrical and mechanical properties on behaviour of sandwich beams with functionally graded face sheets under indentation loading, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 225(4) (2011) 231-244.
[18] Y. Mohammadi, K.H. Safari, M. Rahmani, Free vibration analysis of circular sandwich plates with clamped FG face sheets, Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, 9(4) (2017) 631-646, (in Persian).
[19] M. Shariyat, D. Asgari, M. Azadi, Nonlinear Transient Thermoelastic Analysis of a Thick FGM  Cylinder with Temperature-Dependent Material Properties Using the Finite Element Method, Amirkabir Journal of Mechanical Engineering, 42(1) (2010) 9-18, (in Persian).
[20] M. MohammadiMehr, M. Mehrabi, E. ShabaniNejad, Buckling and vibration analyses of double-bonded nanocomposite micro plates reinforced by CNT and BNNT nanotubes with temperature-dependent material properties based on most general strain gradient theory, Amirkabir Journal of Mechanical Engineering, (2017) (in Persian).
[21] H. Van Tung, Thermal and thermomechanical postbuckling of FGM sandwich plates resting on elastic foundations with tangential edge constraints and temperature dependent properties, Composite Structures, 131 (2015) 1028-1039.
[22] Y. Chen, G. Jin, C. Zhang, T. Ye, Y. Xue, Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory, Composites Part B: Engineering, 153 (2018) 376-386.
[23] J. Seidi, S. Khalili, K. Malekzadeh, Temperaturedependent buckling analysis of sandwich truncated conical shells with FG facesheets, Composite Structures, 131 (2015) 682-691.
[24] F.A. Fazzolari, Natural frequencies and critical temperatures of functionally graded sandwich plates subjected to uniform and non-uniform temperature distributions, Composite Structures, 121 (2015) 197-210.
[25]M. Talebitooti, Thermal effect on free vibration of ring-stiffened rotating functionally graded conical shell with clamped ends, Mechanics of Advanced Materials and Structures, 25(2) (2018) 155-165.
[26] A. Sofiyev, Buckling analysis of freely-supported functionally graded truncated conical shells under external pressures, Composite Structures, 132 (2015) .857-647
[27] N. Aghaei, M. TalebiTooti, Free vibration analysis of nanotube-reinforced composite conical shell in high temperature environment, Amirkabir Journal of Mechanical Engineering, (2018) (in Persian).
[28] A. Sofiyev, The buckling and vibration analysis of coating-FGM-substrate conical shells under hydrostatic pressure with mixed boundary conditions, Composite Structures, 209 (2019) 686-693.
[29] A. Sofiyev, Review of research on the vibration and buckling of the FGM conical shells, Composite Structures, Composite Structures, 211 (2019) 301-317.
[30] C. Zhong, H.-G. Reimerdes, Stability behavior of cylindrical and conical sandwich shells with flexible core, Journal of Sandwich Structures & Materials, 9(2) (2007) 143-166.
[31] X. Jia-chu, W. Cheng, L. Ren-Huai, Nonlinear stability of truncated shallow conical sandwich shell with variable thickness, Applied Mathematics and Mechanics, 21(9) (2000) 977-986.
[32] D.-K. Thai, T. Tu, L. Hoa, D. Hung, N. Linh, Nonlinear Stability Analysis of Eccentrically Stiffened Functionally Graded Truncated Conical Sandwich Shells with Porosity, Materials, 11(11) (2018) 2200.
[33] A. Sofiyev, Application of the FOSDT to the solution of buckling problem of FGM sandwich conical shells under hydrostatic pressure, Composites Part B: Engineering, 144 (2018) 88-98.
[34] G. Sheng, X. Wang, Nonlinear response of fluidconveying functionally graded cylindrical shells subjected to mechanical and thermal loading conditions, Composite Structures, 168 (2017) 675-684.
[35] H.-S. Shen, Functionally graded materials: nonlinear analysis of plates and shells, CRC press, 2016.
[36] L. Boutahar, R. Benamar, A homogenization procedure for geometrically non-linear free vibration analysis of functionally graded annular plates with porosities, resting on elastic foundations, Ain Shams Engineering Journal, 7(1) (2016) 313-333.
[37] M. Kheirikhah, S. Khalili, K.M. Fard, Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory, European Journal of Mechanics-A/Solids, 31(1) (2012) 54-66.
[38] S. Khalili, Y. Mohammadi, Free vibration analysis of sandwich plates with functionally graded face sheets and temperature-dependent material properties: A new approach, European Journal of Mechanics-A/Solids, 35 (2012) 61-74.
[39] K. Lam, L. Hua, Influence of boundary conditions on the frequency characteristics of a rotating truncated circular conical shell, Journal of Sound and Vibration, 223(2) (1999) 171-195.
[40]  M.K. Kwak, J.-R. Koo, C.-H. Bae, Free vibration analysis of a hung clamped-free cylindrical shell partially submerged in fluid, Journal of Fluids and Structures, 27(2) (2011) 283-296.
[41]  A. Sofiyev, The buckling of FGM truncated conical shells subjected to axial compressive load and resting on Winkler–Pasternak foundations, International Journal of Pressure Vessels and Piping, 87(12) (2010) 753-761.
[42] P. Seide, Discussion: ``Buckling of Circular Cones under Axial Compression'' (Lackman, Leslie, and Penzien, Joseph, 1960, ASME J. Appl. Mech., 27, pp. )064-854, Journal of Applied Mechanics, 28 (1961) 315.
[43] A. Sofiyev, Application of the FOSDT to the solution of buckling problem of FGM sandwich conical shells under hydrostatic pressure, Composites Part B: Engineering, 144 (2018) 88-98.
[44] G. Sheng, X. Wang, Nonlinear response of fluidconveying functionally graded cylindrical shells subjected to mechanical and thermal loading conditions, Composite Structures, 168 (2017) 675-684.
[45] H.-S. Shen, Functionally graded materials: nonlinear analysis of plates and shells, CRC press, 2016.
[46] L. Boutahar, R. Benamar, A homogenization procedure for geometrically non-linear free vibration analysis of functionally graded annular plates with porosities, resting on elastic foundations, Ain Shams Engineering Journal, 7(1) (2016) 313-333.
[47] M. Kheirikhah, S. Khalili, K.M. Fard, Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory, European Journal of Mechanics-A/Solids, 31(1) (2012) 54-66.
[48] S. Khalili, Y. Mohammadi, Free vibration analysis of sandwich plates with functionally graded face sheets and temperature-dependent material properties: A new approach, European Journal of Mechanics-A/Solids, 35 (2012) 61-74.
[49] K. Lam, L. Hua, Influence of boundary conditions on the frequency characteristics of a rotating truncated circular conical shell, Journal of Sound and Vibration, 223(2) (1999) 171-195.
[50] M.K. Kwak, J.-R. Koo, C.-H. Bae, Free vibration analysis of a hung clamped-free cylindrical shell partially submerged in fluid, Journal of Fluids and Structures, 27(2) (2011) 283-296.
[51] A. Sofiyev, The buckling of FGM truncated conical shells subjected to axial compressive load and resting on Winkler–Pasternak foundations, International Journal of Pressure Vessels and Piping, 87(12) (2010) 753-761.
[52]  P. Seide, Discussion: ``Buckling of Circular Cones under Axial Compression'' (Lackman, Leslie, and Penzien, Joseph, 1960, ASME J. Appl. Mech., 27, pp. )064-854, Journal of Applied  Mechanics, 28 (1961) 315.