نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری، دانشکده مهندسی صنایع و مکانیک، دانشگاه آزاد اسلامی، واحد قزوین، قزوین، ایران
2 استادیار، دانشکده مهندسی صنایع و مکانیک، دانشگاه آزاد اسلامی، واحد قزوین، قزوین، ایران
3 استادیار، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد تاکستان، تاکستان، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Due to wide application of conical sandwich shells in the modern industries, it is nessesary to investigate the mechanical behavior of theses structures. In this paper, for the first time, by considering the flexibility of the core in the high order theory of sandwich shells, the the buckling behavior of the truncated conical sandwich shells which include a temperature dependent porous FG core and two temperature dependent homogeneous face sheets are investigated in various thermal conditions. The power law rule which modified by considering the two types of porosity volume fractions are applied to model the gradually variation of functionally graded materials. By applying the principle of minimum potential energy, considering the in-plane stresses in the core and faces, and nonlinear von-karman strains for both mechanical and thermal stresses, the governing equations are obtained under the axial in-plane compressive loads. A Galerkin procedure are used to solve the equations in a simply supported boundary condition. Uniform, linear and nonlinear temperature distributions are used to model the effect of the temperature changing in the sandwich shell. To verify the results of these work, they are compared with FEM results obtained by Abaqus software and for special cases with the results in literature. Critical load variations are surveyed versus the temperature changing, geometrical effects, porosities, and some others in the numerical examples.
کلیدواژهها [English]