پاسخ زمانی ورق ساندویچ حلقوی ساخته شده از مواد مدرج تابعی ترکیب شده با لایه های پیزوالکتریک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مکانیک، پردیس دانشگاهی، دانشگاه گیلان، رشت، ایران

2 استاد، گروه دینامیک و کنترل، دانشکده مکانیک، دانشگاه گیلان، رشت، ایران

3 استادیار، گروه دینامیک و کنترل، دانشکده مکانیک، دانشگاه گیلان، رشت، ایران

چکیده

در این پژوهش به بررسی پاسخ زمانی ساندویچ ورق حلقوی متقارن که دارای هسته تشکیل شده از مواد تابعی و لایه‌های پیزوالکتریک است، پرداخته می‌شود. ورق ساندویچی به طور همزمان تحت بارگذاری نیروی مکانیکی هارمونیک و ولتاژ الکتریکی خارجی است. براساس مدل تابع توانی، فرض شده است که خواص مواد بکار رفته در هسته در جهت ضخامت هسته متغیر میباشد. همچنین برای بیان میدان جابجایی، به دلیل ضخیم بودن هسته مرکزی ساخته شده از مواد تابعی، از تئوری برشی مرتبه سوم که اثرات نیروهای برشی را درنظر می‌گیرد استفاده شده است. در ادامه با استفاده از اصل همیلتون معادلات ساختاری بر حسب ترم‌های جابجایی بدست آمده و با استفاده از روش عددی تفاضلات مربعی حل شده است. نهایتا پاسخ زمانی برحسب تغییرات پارامترهای موثر مثل شعاع داخلی، ایندکس تابع توانی، ضخامت هسته و ولتاژ خارجی مورد ارزیابی قرار گرفته است. نتایج شبیه‌سازی نشان می‌دهد که با افزایش شعاع داخلی دامنه نوسانات در بازه زمانی مورد نظر کاهش می‌یابد. بعلاوه با افزایش پارامتر ایندکس تابع توانی، دامنه پاسخ زمانی افزایش می‌یابد. همچنین با افزایش ایندکس تابع توانی پاسخ ورق به یک مجانب میل می‌کند که نشان دهنده هسته کاملا فلزی می‌باشد. به علاوه افزایش ولتاژ اعمالی می‌تواند دامنه ورق را نسبت به حالت نامی به صورت خطی افزایش دهد. در نهایت مشاهده می‌گردد که با اعمال ولتاژ الکتریکی خارجی به خوبی می‌توان دامنه پاسخ زمانی را کاهش داد و از این مزیت در کنترل سیستم‌های ارتعاشی استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Transient Response of Annular Sandwich Plate with Functional Graded Core Combined with Piezoelectric Layers

نویسندگان [English]

  • habib arabi 1
  • Ahmad Bagheri 2
  • Gholamreza Zarepour 3
1 Department of Mechanic , University Campus 2, University of Guilan, Rasht, Iran
2 professor, Department of Dynamic-Control , Faculty of Mechanic, University of Guilan, Rasht, Iran
3 assistant professor, Department of Dynamic-Control , Faculty of Mechanic, University of Guilan, Rasht, Iran
چکیده [English]

In this study, the transient response of the symmetric annular sandwich plate, with functionally graded core and piezoelectric layers, is investigated. It is also assumed that the sandwich plate is under external harmonic force and electrical voltage. Based on the power function model, it is assumed that the properties of the core material vary in the direction of the core thickness. To express the displacement field, the third order shear deformation theory is used. By use of the Hamilton principle, the structural equations are obtained in terms of displacement components and solved using the differential quadrature method. Finally, the time response is evaluated in terms of variations in effective parameters such as internal radius, power function index, core thickness and external voltage. The simulation results showed that the amplitude of the oscillations decreases when the internal radius of plate to be increased, in the desired time interval. In addition, by increasing the index parameter of the power function, the time response range increases. Finally, by applying external electrical voltage, the vibration amplitude of plate reduced and this advantage is used in control of vibrating systems.

کلیدواژه‌ها [English]

  • Transient time response
  • Electro-mechanical loading
  • Annular sandwich plate
  • Functional graded material
  • Piezoelectric layers
  • Differential quadrature method
[1] N. Viliani, S. Khalili, H. Porrostami, Buckling analysis of FG plate with smart sensor/actuator, (2009).
[2] P. Phung-Van, L.B. Nguyen, L.V. Tran, T.D. Dinh, C.H. Thai, S. Bordas, M. Abdel-Wahab, H. Nguyen-Xuan, An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates, International Journal of Non-Linear Mechanics, 76 (2015) 190-202.
[3] X. Liang, Z. Wang, L. Wang, G. Liu, Semi-analytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation, Journal of Sound and Vibration, 333(12) (2014) 2649-2663.
[4] E. CRAWLEY, D. Luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA journal, 25(10 (1987) 1373-1385.
 [5] E.F. Crawley, K.B. Lazarus, Induced strain actuation of isotropic and anisotropic plates, AIAA journal, 29(6) (1991) 944-951.
 [6] Y. Yu, R. Xia, Study on finite element analysis and shape control of composite laminate containing piezoelectric actuator/sensor, Acta Mater. Compos. Sinica, 14(2) (1997) 114-119.
 [7] A.A. Jafari, A.A. Jandaghian, O. Rahmani, Transient bending analysis of a functionally graded circular plate with integrated surface piezoelectric layers, International Journal of Mechanical and Materials Engineering, 1(9) (2014) 1-14.
 [8] A.A. Jandaghian, O. Rahmani, Size-dependent free vibration analysis of functionally graded piezoelectric plate subjected to thermo-electro-mechanical loading, Journal of Intelligent Material Systems and Structures, (2017) 1045389X17704920.
[9] S. Narayanan, V. Balamurugan, Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators, Journal of sound and vibration, 262(3) (2003) 529-562.
 [10] J.M.S. Moita, I.F. Correia, C.M.M. Soares, C.A.M. Soares, Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators, Computers & Structures, 82(17-19) (2004) 1349-1358.
 [11] C. Hong, Transient responses of magnetostrictive plates by using the GDQ method, European Journal of Mechanics-A/Solids, 29(6) (2010) 1015-1021.
[12] C.-C. Hong, Transient Response of Functionally Graded Material Circular Cylindrical Shells with Magnetostrictive Layer, Journal of Mechanics, 32(4) (2016) 473-478.
[13] X.-L. Huang, H.-S. Shen, Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments, Journal of Sound and Vibration, 289(1-2) (2006) 25-53.
[14] J. Reddy, C. Wang, S. Kitipornchai, Axisymmetric bending of functionally graded circular and annular plates, European Journal of Mechanics-A/Solids, 18(2) (1999) 185-199.
[15] R. Javaheri, M. Eslami, Thermal buckling of functionally graded plates, AIAA journal, 40(1) (2002) 162-184.
[16] R. Javaheri, M. Eslami, Thermal buckling of functionally graded plates based on higher order theory, Journal of thermal stresses, 25(7) (2002) 603-625.
 [17] H. Mozafari, A. Ayob, Effect of thickness variation on the mechanical buckling load in plates made of functionally graded materials, Procedia Technology, 1 (2012) 496-504.
 [18] S. Sahraee, A. Saidi, Axisymmetric bending analysis of thick functionally graded circular plates using fourth[1]order shear deformation theory, European Journal of Mechanics-A/Solids, 28(5) (2009) 974-984.
[19] E.F. Crawley, J. De Luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA journal, 25(10) (1987) 1373-1385.
[20] R. Bellman, J. Casti, Differential quadrature and long-term integration, Journal of Mathematical Analysis and Applications, 34(2) (1971) 235-238.
 [21] S. Kosari, M. Erfanianb, Using Chebyshev polynomials zeros as point grid for numerical solution of linear and nonlinear PDEs by differential quadrature-based radial basis functions.
 [22] X. Wang, Differential quadrature for buckling analysis of laminated plates, Computers & structures, 57(4) (1995) 715-719.
 [23] M. Mohammadimehr, M. Emdadi, H. Afshari, B. Rousta Navi, Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermo-magneto-mechanical loadings using DQM, International Journal of Smart and Nano Materials, 9(4) (2018) 233-260.
 [24] K.-M. Liew, Y. Xiang, S. Kitipornchai, C. Wang, Vibration of Mindlin plates: programming the p-version Ritz method, Elsevier, 1998.
 [25] R. Aghababaei, J. Reddy, Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates, Journal of Sound and Vibration, 326(1-2) (2009) 277-289.