طراحی‌ تک‌هدفه‌ و چندهدفه‌ سیستم‌های کنترل بهینه‌ با استفاده از برنامه‌ریزی ژنتیکی‌ و مقایسه‌ آن با حل‌ تحلیلی‌ معادله‌ ریکاتی‌

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه دینامیک ارتعاشات و کنترل، دانشکده مکانیک، دانشگاه گیلان، رشت، ایران

2 گروه مکانیک، دانشکده مکانیک، دانشگاه گیلان، رشت، ایران

3 گیلان*مهندسی مکانیک

چکیده

بدست‌ آوردن ساختار ریاضی‌ سیگنال کنترلی‌ که‌ بتواند حالت‌های سیستم‌ را از حالت‌ ابتدایی‌ به‌ حالت‌ نهایی‌ مطلوب برساند یکی‌ از مهم‌ترین‌ مباحث‌ در حوزه کنترل بهینه‌ سیستم‌های مدرن می‌باشد. به‌طور معمول سیگنال کنترلی‌ بهینه‌ با حل‌ یک‌ شاخص‌ تک‌هدفه‌ که‌ ترکیبی‌ از تلاش کنترلی‌ و شاخص‌هایی‌ از حالت‌های سیستم‌ با استفاده از ضرایب‌ وزنی‌ می‌باشند، با استفاده از روشهای عددی مانند برنامه‌ریزی دینامیکی‌ و یا از روشهای تحلیلی‌ عددی مانند هامیلتون-جاکوبی‌-بلمن‌ و یا معادلات ریکاتی‌ بدست‌ می‌آید. از آنجایی‌ که‌ انتخاب ضرایب‌ وزنی‌ مناسب‌ در روشهای متداول بهینه‌سازی مستلزم آزمون و خطا می‌باشد. در این‌ مقاله‌ با استفاده از برنامه‌ریزی ژنتیکی‌ و بدون استفاده از هرگونه‌ روش تحلیلی‌، ضرایب‌ وزنی‌ حذف و معیارهای بهینگی‌ شامل‌ تلاش کنترلی‌ و خطای مسیر متغیر حالت‌ جداسازی می‌شوند و درنتیجه‌ مسائل‌ بهینه‌سازی تک‌هدفه‌ به‌ چندهدفه‌ ارتقا می‌یابند. درواقع‌ با استفاده از برنامه‌ریزی ژنتیکی‌ در این‌ مقاله‌ و با کمک‌ پردازش موازی علاوه بر اینکه‌ می‌توان به‌ فرم تحلیلی‌ حل‌ معادلات ریکاتی‌ در مسائل‌ تک‌هدفه‌ به‌عنوان سیگنال کنترلی‌ بهینه‌ دست‌ یافت‌، در بهینه‌سازی چندهدفه‌ امکان مصالحه‌ توابع‌ هدف با توجه‌ به‌ نمودارهای پارتو بدست‌ آمده، توسط‌ طراح امکانپذیر خواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Single and Multi-objective Optimal Control Design by Genetic Programming and Comparison with Riccati Equation Solutions

نویسندگان [English]

  • Adel Mohamamdi 1
  • Nader Nariman-zadeh 2
  • Ali Jamali 3
1 Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
2 Department of Mechanical Engineering, Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
3 Faculty of Mechanical Enginnering, University of Guilan, Rasht, Iran
چکیده [English]

 Gaining the function of control signal that transfer the system states from initial to desired final conditions is one of the main issues related to the optimal control of modern systems. Optimal control signal is usually obtained by numerical solution (such as dynamic programming algorithm) or analytical solution (like Hamilton-Jacobi-Bellman or Riccati equations approaches) of a single-objective performance index which is a weighted combination of control effort and the fitness of system’s states. However, choosing proper weight coefficients in these approaches needs a lot of trial and error in addition to experience. In this papers, such time consuming procedures are eliminated by using Genetic programming in single and multi-objective optimization process to find those closed-form mathematical solutions of optimal control problems. In this way, it would be readily possible to trade-off among the objective functions using the obtained pareto-front of those solutions based on the needs of the control system designer. It will be shown that in the case of same weighting factors, the solution of the Riccati equation would also be obtained using the approach of this paper

کلیدواژه‌ها [English]

  • Optimal control
  • Genetic programming
  • Multi-objective optimization
  • Pareto front
  • Quadratic performance index
[1] D.P. Bertsekas, Dynamic programming and optimal control, Athena scientific 2005.
[2] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise Introduction, Princeton University Press, 2011.
[3] F. Lewis, D. Vrabie, V. Syrmos, Optimal control, Wiley, Hoboken, NJ, 2012.
[4] N. Wiener, Cybernetics, Wiley, New York, NY, (1948).
[5] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series, Technology Press, Cambridge, MA, (1949).
[6] S. Dreyfus, Richard Bellman on the Birth of Dynamic Programming, Operations Research, 50 No. 1, (2002) 48-51.
[7] R.E. Bellman, "On the Theory of Dynamic Programming, Proceedings of the National Academy of Sciences of the United States of America, 38 No.8, (1952) 716-719.
[8] R.E. Bellman, Dynamic Programming, Sixth Edition, Princeton University Press, New Jersey, (1957).
[9] V. G. Boltyanskii, R. V. Gamkrelidze, L.S. Pontryagin, On the theory of optimal processes, Dokl. Akad. Nauk SSSR, 110:7-10, (1956).
[10] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley-Interscience, New York, NY, (1962).
 [11] R.E. Kalman, A new approach to linear filtering in prediction problems, ASME Journal of Basic Engineering, 82:34-45, (1960).
[12] R.E. Kalman, Contributions to the theory of optimal control, Bol. Soc. Mat. Mexicana, 5(2) (1960) 102-119.
[13] R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory, Transactions ASME J. Basic Eng., 83:95-107, (1961).
 [14] S. Bittanti, A.J. Laub, J.C. Willems, The Riccati Equation, Springer-Verlag, New York, NY, (1991).
 [15] C.-H. Hsiao, W.-J. Wang, Optimal control of linear time-varying systems via Haar wavelets, Journal of optimization theory and applications, 103(3) (1999) 641- 655.
[16] S. Radhoush, M. Samavat, M.A. Vali, Optimal control of linear time-varying systems using the Chebyshev wavelets (a comparative approach), Systems Science & Control Engineering: An Open Access Journal, 2(1) (2014) 691-698.
 [17] C.A. Coello, G.B. Lamont, V. Veldhuizen, Evolutionary algorithms for solving multi-objective problems, Springer, (second edition) (2007).
[18] R. Sun, Q. Hong, G. Zhu, A novel optimal control method for impulsive-correction projectile based on particle swarm optimization, Discrete Dynamics in Nature and Society, 2016 (2016).
 [19] K.-F. Man, K.-S. Tang, S. Kwong, Genetic algorithms: concepts and designs, Springer Science & Business Media, 2012.
 [20] J.R. Koza, F.H. Bennett, D. Andre, M.A. Keane, F. Dunlap, Automated synthesis of analog electrical circuits by means of genetic programming, IEEE Transactions on Evolutionary Computation, 1(2) (1997) 109-128.
[21] H. Assimi, A. Jamali, N. Nariman-Zadeh, Sizing and topology optimization of truss structures using genetic programming, Swarm and Evolutionary Computation, 37 (2017) 90-103.
 [22] R. A. Maher, M.J. Mohamed, An Enhanced Genetic Programming Algorithm for Optimal Controller Design Intelligent Control and Automation, 9 (2013) 94-101.
 [23] A. Jamali, E. Khaleghi, I. Gholaminezhad, N. Nariman[1]zadeh, Modelling and prediction of complex non-linear processes by using Pareto multi-objective genetic programming, International Journal of Systems Science, 47(7) (2016) 1675-1688.
[24] I. Gholaminezhad, A. Jamali, H. Assimi, Automated synthesis of optimal controller using multi-objective genetic programming for two-mass-spring system, in: Robotics and Mechatronics (ICRoM), 2014 Second RSI/ ISM International Conference on, 2014, pp. 041-046.
[25] W. Kim, S.W. Jeon, Y. Kim, Model-based multi[1]objective optimal control of a VRF (variable refrigerant flow) combined system with DOAS (dedicated outdoor air system) using genetic algorithm under heating conditions, Energy, 107 (2016) 196-204.
 [26] Y.H. Sardahi, Multi-objective optimal design of control systems, UC Merced, 2016.
[27] J.R. Koza, Genetic Programming II Videotape: The Next Generation, MIT Press Cambridge, MA, 1994.
[28] D.E. Kirk, Optimal Control Theory, United Kingdom, in, Dover Publications,2004.