تعیین تجربی پارامترهای مدل ساختاری دراکر-پراگر کپ اصلاحشده برای پودر 92 درصد آلومینای آماده برای پرس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 صنعتی شاهرود-مهندسی مکانیک

3 صنعتی شاهرود

چکیده

در این پژوهش، رفتار تغییر شکل پودر تجاری 92 درصد آلومینای آماده برای پرس، با استفاده از مدل دراکر- پراگر کپ اصلاح‌شده مورد مطالعه قرار گرفته است. این مدل، یک معیار تسلیم چند-سطحی برای بیان رفتار مومسان پودرها حین تراکم است برای این منظور، با استفاده از آزمون‌های تجربی، پارامترهای مدل دراکر-پراگر کپ اصلاح‌شده به صورت تابعی از چگالی نسبی به دست آمد. ثوابت سطح تسلیم خرابی برشی به کمک آزمون‌های ساده فشردن قطری و فشردن محوری نمونه‌های استوانه‌ای در چگالی‌های نسبی مختلف به دست آمد. برای تعیین تجربی دیگر پارامترها، یک قالب مجهز به کرنش‌سنج و نیروسنج طراحی و ساخته شد. پارامترهای سطح تسلیم کپ با انجام آزمون تراکم تک‌محوری چند مرحله‌ای درون این قالب، به دست آمدند. از نتایج آزمون‌های بارگذاری-باربرداری متوالی انجام شده به کمک این قالب، ضریب اصطکاک بین پودر و قالب در بارگذاری و مدول‌های کشسانی در باربرداری استخراج شد. برای شبیه‌سازی المان محدود فرایند تراکم تک‌محوری در نرم‌افزار آباکوس، پارامترهای ماده به صورت تابعی از چگالی نسبی به‌کار رفتند. به این منظور، زیربرنامه مناسب برای بیان تغییرات چگالی توسعه داده شد. مقایسه نتایج شبیه‌سازی با نتایج متناظر در آزمون تجربی حاکی از تطابق بسیار خوب آن دو است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Determination of the Modified Drucker-Prager Cap Constitutive Model for 92 Percent Alumina Powder

نویسندگان [English]

  • Sohrab Salamati-Khiavi 1
  • Seyed Hadi Ghaderi 2
  • Seyed Vahid Hosseini 3
1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک و مکاترونیک، دانشگاه صنعتی شاهرود، شاهرود، ایران،
2 صنعتی شاهرود-مهندسی مکانیک
3 استادیار، دانشکده مهندسی مکانیک و مکاترونیک، دانشگاه صنعتی شاهرود، شاهرود، ایران، v_hosseini@shahroodut.ac.ir
چکیده [English]

In this research, the deformation behavior of the commercial ready to press 92 percent alumina powder has been investigated using the modified Drucker-Prager cap model. This model is a multi-surface yield model for the description of the plastic behavior of powders during consolidation. To this end, parameters of the model as functions of density were obtained by means of experiments. The constants of the shear failure yield surface were obtained based on simple diametric and axial compressive loading cylindrical specimens with various relative densities. For determining the remaining parameters of the model, an instrumented die fitted with strain gage and load cell was designed and fabricated. Parameters of the cap surface were achieved based on the uniaxial die compaction experiments. Based on consecutive loading-unloading tests using the instrumented die, the friction coefficient and elastic moduli were derived from loading and unloading phases respectively. For finite element simulation of the uniaxial compaction, density-dependent material parameters were employed in ABAQUS. The variations of density were taken into account using a user-defined filed variable subroutine. Simulation results prove a very good agreement with the experimental counterpart.

کلیدواژه‌ها [English]

  • Modified Drucker-Prager /Cap model
  • Powder compaction
  • Finite element method
  • Instrumented die
  • Ceramic powder
[1]   H.  Park,  K.  Kim,  Consolidation  behavior  of SiC powder under cold compaction, Materials Science  and  Engineering:  A, (1)(2001)116-124.
[2]  C. Lu, Determination of cap model parameters using numerical optimization method for powder  compaction,  PhD  Thesis,  Marquette University, 2010.
[3]  C. Shang, Modelling powder compaction and breakage of compacts, PhD Thesis, University of Leicester, 2012.
[4]  H. Kashani Zadeh, Finite element analysis and experimental study of metal powder compaction, PhD Thesis, Queen’s University, 2010.
[5]  W. Wang, Numerical modeling of compaction of  particulate  systems,  MSc  Thesis,  State University System of Florida, 1999.
[6]  K. Kim, S. Choi, H. Park, Densification behavior of ceramic powder under cold compaction, Transactions-American Society of Mechanical engineers Journal  of Engineering Materials and Technology, 122(2) (2000) 238-244.
[7]  D.H. Zeuch, J. Grazier, J. Argüello, K.G. Ewsuk, Mechanical properties and shear failure surfaces for two alumina powders in triaxial compression, Journal of materials science, 36(12) (2001) 2911-2924.
[8] R. Henderson, B. Moriarty, Finite element modelling of decompression after isostatic pressing, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 216(2) (2002) 215224.
[9] Y. Foo, Y. Sheng, B. Briscoe, An experimental and numerical study of the compaction of alumina agglomerates, International journal of solids and structures, 41(21) (2004) 59295943.
[10]   G.S. Wagle, Die compaction simulation: Simplifying the application of a complex constitutive model using numerical and physical  experiments,  PhD  Thesis,  The Pennsylvania State University, 2006.
[11]   P. Carlone, G. Palazzo, Computational modeling of the cold compaction of ceramic powders, International Applied Mechanics, 42(10) (2006) 1195-1201.
[12]   I.  Sinka,  J.  Cunningham,  A.  Zavaliangos, The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: a validation study of the Drucker–Prager Cap model,  Powder  Technology,  133(1-3)(2003)33-43.
[13]  L. Han, J. Elliott, A. Bentham, A. Mills, G.Amidon,  B.  Hancock,  A  modified  DruckerPrager Cap model for die compaction simulation of pharmaceutical powders,International Journal of Solids and Structures,45(10)(2008)3088-3106.
[14]   M. Zhou, S. Huang, J. Hu, Y. Lei, Y. Xiao,B. Li, S. Yan, F. Zou, A density-dependent modified  Drucker-Prager  Cap  model  for  die compaction of Ag57. 6-Cu22. 4-Sn10-In10 mixed  metal  powders,  Powder  Technology, 305 (2017) 183-196.
[15]   J. Almanstötter, A modified Drucker–Prager Cap  model  for  finite  element  simulation of doped tungsten powder compaction, International Journal of Refractory Metals and Hard Materials, 50 (2015) 290-297.
[16]   ABAQUS 6-14 documentation, in, Dassault Systemes, 2014. 
[17]   ASTM, Designation: D 3967 – 08, Standard test method for splitting tensile strength of intact  rock  core  specimens, ASTM  Internat., 2008.
[18]   J.  Cunningham,  I.  Sinka,  A.  Zavaliangos, Analysis of tablet compaction. I.Characterization of mechanical behavior of powder and powder/tooling friction, Journal of pharmaceutical  sciences,  93(8)  (2004)  20222039.
[19]   O. Coube, H. Riedel, Numerical simulation of metal powder die compaction with special consideration of cracking, Powder Metallurgy, 43(2) (2000) 123-131.
[20]   Y.B.  Kim,  J.S.  Lee,  S.M.  Lee,  H.J.  Park, G.A. Lee, Calibration of a Density-dependent Modified Drucker-Prager Cap model for AZO powder, in:  Advanced Materials Research, Trans Tech Publ, 2012, pp. 1249-1256.
[21]   M. Zhou, S. Huang, W. Liu, Y. Lei, S. Yan, Experiment Analysis and Modelling of Compaction Behaviour of Ag60Cu30Sn10 Mixed Metal Powders, in:  IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, pp. 1-7.
[22]   H. Diarra, V. Mazel, A. Boillon, L. Rehault, V. Busignies, S. Bureau, P. Tchoreloff, Finite Element Method (FEM) modeling of the powder compaction of cosmetic products: Comparison between simulated and experimental results, Powder technology, 224 (2012) 233-240.
[23]   A. Procopio, A. Zavaliangos, J. Cunningham, Analysis of the diametrical compression test and the applicability to plastically deforming materials, Journal of Materials Science, 38(17) (2003) 3629-3639.
[24]   H. Shin, J.-B. Kim, S.-J. Kim, K.Y. Rhee, A simulation-based determination of cap parameters  of  the  modified  Drucker– Prager cap model by considering specimen barreling during conventional triaxial testing, Computational Materials Science, 100 (2015) 31-38.
[25]   C.  Wu,  B.C.  Hancock,  J.A.  Elliott,  S.M. Best,  A.C.  Bentham,  W.  Bonfield,  Finite Element Analysis of Capping Mechanisms during Pharmaceutical Powder Compaction, Advances in Powder Metallurgy and Particulate Materials, 1 (2005) 62-73.
[26]   B. Zhang, M. Jain, C. Zhao, M. Bruhis, R. Lawcock, K. Ly, Experimental calibration of density-dependent  modified  Drucker-Prager/ Cap model using an instrumented cubic die for powder compact, Powder Technology, 204(1) (2010) 27-41.
[27]   C. Shang, I. Sinka, J. Pan, Constitutive model calibration for powder compaction using instrumented  die  testing,  52(7)  (2012)  903916.
[28]   K.  LaMarche,  D.  Buckley,  R.  Hartley,  F. Qian, S. Badawy, Assessing materials’ tablet compaction  properties  using  the  Drucker– Prager  Cap  model,  Powder  Technology,  267 (2014) 208-220.
[29]   S.  Garner,  J.  Strong,  A.  Zavaliangos,  The extrapolation  of  the  Drucker–Prager/Cap material parameters to low and high relative densities,  Powder  Technology,  283  (2015) .622-012
[30]   L. Argani, D. Misseroni, A. Piccolroaz, Z. Vinco, D. Capuani, D. Bigoni, Plasticallydriven variation of elastic stiffness in green bodies during powder compaction: Part I. Experiments and elastoplastic coupling, Journal of the European Ceramic Society, 36(9) (2016) 2159-2167.
[31]   I.s.  Aydin,  B.J.  Briscoe,  K.Y.  Şanlitürk, The  internal  form  of  compacted  ceramic components:  a  comparison  of  a  finite element modelling with experiment, Powder Technology, 89(3) (1996) 239-254.
[32]   C. Melo, A. Moraes, F. Rocco, F. Montilha, R. Canto, A validation procedure for numerical models of ceramic powder pressing, Journal of the  European  Ceramic  Society,  38(8)  (2018) 2928-2936.
[33]   M. Zhou, S. Huang, Y. Lei, J. Hu, S. Yan, F. Zou, Investigation on compaction behaviors of Ag35Cu32Zn33 mixed metal powders under cold die compaction, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 12(2) (2018) JAMDSM0037JAMDSM0037.
[34]   A. Baroutaji, S. Lenihan, K. Bryan, Combination  of  finite  element  method  and Drucker-Prager Cap material model for simulation of pharmaceutical tableting process, Materialwissenschaft  und  Werkstofftechnik,48(11)(2017)1133-1145.