[1] J.R. C. Pongmala, C. Price, R. Baker, Is Foot Contact a Collision?, Proceedings of Gait & Clinical Movement Analysis Society 2015 Annual Conference, (2015).
[2] M. Srinivasan, A. Ruina, Computer optimization of a minimal biped model discovers walking and running, Nature, 439(7072) (2006) 72.
[3] M. Wisse, D.G. Hobbelen, R.J. Rotteveel, S.O. Anderson, G.J. Zeglin, Ankle springs instead of arc-shaped feet for passive dynamic walkers, in: Humanoid Robots, 2006 6th IEEE-RAS International Conference on, IEEE, 2006, pp. 110-116.
[4] L. Humphrey, H. Hemami, A computational human model for H[SORULQJ the role of the feet in balance, Journal of biomechanics, 43(16) (2010) 3199-3206.
[5] S. Aoi, Y. Sato, K. Tsuchiya, Arc feet effects on stability based on a simple oscillator-driven walking model, Journal of Robotics and Mechatronics, 20(5) (2008) 709.
[6] K. Hyodo, T. Oshimura, S. Mikami, S.j. Suzuki, Stabilizing passive dynamic walk under wide range of environments by constraint mechanism fitted to sole of foot, Journal of Robotics and Mechatronics, 21(3) (2009) 403.
[7] S. Sadati, M. Borgheinejad, H. Fooladi, M. Naraghi, A. Ohadi, Optimum Design, Manufacturing and ([SHULPHQW of a Passive Walking Biped: Effects of Structural Parameters on Efficiency, Stability and Robustness on Uneven Trains, in: Applied Mechanics and Materials, Trans Tech Publ, 2013, pp. 107-111.
[8] P. Mahmoodi, R.S. Ransing, M.I. Friswell, Modelling the effect of ‘heel to toe’ roll-over contact on the walking dynamics of passive biped robots, Applied Mathematical Modelling, 37(12-13) (2013) 7352-7373.
[9] F. Asano, Z.-W. Luo, The effect of semicircular feet on energy dissipation by heel-strike in dynamic biped locomotion, in: Robotics and Automation, 2007 IEEE International Conference on, IEEE, 2007, pp. 3976-3981.
[10] P.G. Adamczyk, S.H. Collins, A.D. Kuo, The advantages of a rolling foot in human walking, J ([S Biol, 209(Pt 20) (2006) 3953-3963. [11] M. Kwan, M. Hubbard, Optimal foot shape for a passive dynamic biped, J Theor Biol, 248(2) (2007) 331-339.
[12] J. Li, Y. Tian, X. Huang, H. Chen, Foot shape for passive dynamic kneed biped robot, in: Robotics and Biomimetics (ROBIO), 2010 IEEE International Conference on, IEEE, 2010, pp. 1281-1286.
[13] M.H. F. Ghafouri, M. Jalili, Mechanical and energetic consequences of FRQYH[-curved sole in human walking with different patterns, ICROM International Conference (2017).
[14] S. Fallah, N. Keshavarzi, M.H. Honarvar, Joint torques in biped gait following changes in leg length, in: 2016 4th International Conference on Robotics and Mechatronics (ICROM), IEEE, 2016, pp. 554-559.
[15] M.H. N. Shojaei, Kinemtacs, Kinetics, and Numerical Simulation of Walking with a 1-DoF Dynamic Boot with Passive Controller and Arbitrary Contact Surface, Biomedical Engineering Conference (2016).
[16] J.M. Donelan, R. Kram, A.D. Kuo, Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking, Journal of ([SHULPHQWDO Biology, 205(23) (2002) 3717-3727.
[17] J.M. Donelan, R. Kram, A.D. Kuo, Simultaneous positive and negative H[WHUQDO mechanical work in human walking, Journal of biomechanics, 35(1) (2002) 117-124.
[18] P. Channon, S. Hopkins, D. Pham simulation and optimization of gait for a bipedal robot, Mathematical and Computer Modelling, 14 (1990) 463-467.
[19] P. Channon, S. Hopkins, D. Pham, A variational approach to the optimization of gait for a bipedal robot, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 210(2) (1996) 177-186.
[20] L. Roussel, C. Canudas-de-Wit, A. Goswami, Generation of energy optimal complete gait cycles for biped robots, in: Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on, IEEE, 1998, pp. 2036-2041.
[21] C. Chevallereau, Y. Aoustin, Optimal reference trajectories for walking and running of a biped robot, Robotica, 19(05) (2001).
[22] G. Capi, S.-i. Kaneko, K. Mitobe, L. Barolli, Y. Nasu, Optimal trajectory generation for a prismatic joint biped robot using genetic algorithms, Robotics and autonomous systems, 38(2) (2002) 119-128.
[23] S.H. Collins, Dynamic Walking Principles Applied to Human Gait, (2008).
[24] N.T. Phuong, T.D. Huy, N.C. Cuong, H.D. Loc, A simple walking control method for biped robot with stable gait, Journal of Computer Science and Cybernetics, 29(2) (2013) 105-115.
[25] A.D. Kuo, J.M. Donelan, A. Ruina, Energetic consequences of walking like an inverted pendulum: step-to-step transitions, ([HUFLVH and sport sciences reviews, 33(2) (2005) 88-97.
[26] T. McGeer, Passive walking with knees, in: Proceedings., IEEE International Conference on Robotics and Automation, IEEE, 1990, pp. 1640-1645.
[27] P.G. Adamczyk, A.D. Kuo, Mechanical and energetic consequences of rolling foot shape in human walking, J ([S Biol, 216(Pt 14) (2013) 2722-2731.
[28] O. Darici, H. Temeltas, A.D. Kuo, Optimal regulation of bipedal walking speed despite an XQH[SHFWHG bump in the road, PLoS One, 13(9) (2018) e0204205.
[29] P.G. Adamczyk, A.D. Kuo, Redirection of center-of[1]mass velocity during the step-to-step transition of human walking, J ([S Biol, 212(Pt 16) (2009) 2668-2678.
[30] B.R. Whittington, D.G. Thelen, A simple mass-spring model with roller feet can induce the ground reactions observed in human walking, J Biomech Eng, 131(1) (2009) 011013.
[31] W. Zijlstra, A.L. Hof, Displacement of the pelvis during human walking: H[SHULPHQWDO data and model predictions, Gait & posture, 6(3) (1997)249-262.