شبیه‌سازی رشد عضله دوسررانی تبر اثر کشش با بکارگیری یک مدل چند مقیاسه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مکانیک- دانشکده مهندسی- دانشگاه فردوسی مشهد

2 گروه مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد

3 دانشگاه تهران*مهندسی مکانیک

4 دانشگاه علوم پزشکی تهران

چکیده

شناخت روند رشد ماهیچه و تعیین نواحى بحرانى تحت آسیب و یا پارگى ابزارى براى تشخیص روش صحیح درمان براى متخصصان طب فیزیکى و توان بخشى و ارتوپدى مى باشند. هدف این مقاله، بررسى نحوه رشد سلول عضلانى-اسکلتى و هم چنین تعیین نواحى آسیب عضله دوسررانى تحت کشش هاى غیر فعال وارده بر آن است. با تجزیه تانسور گرادیان تغییر شکل به دو بخش الاستیک و رشد، روابط رشد محدود براى ماهیچه با رفتار ماده هایپرالاستیک تعیین شده اند. روابط مکانیک محیط پیوسته با معادله تکامل رشد تلفیق و معادلات دیفرانسیل بیولوژیکى و مکانیکى حاصل شدند. براى حل آن ها از روش اجزاى محدود در نرم افزار آباکوس و با نوشتن زیربرنامه اى براى رفتار ماده در زبان فرترن استفاده شد. عضله ى دوسررانى قسمت سر بلند به شکل یک استوانه فرض شده و شبیه سازى آن براى یک دوره 6 هفته اى و به میزان 10 ̃افزایش طول اولیه انجام شد. نتایج نشان مى دهند که ماهیچه به طور ناهمگن رشد مى کند و بیشینه کشیدگى ها در رویه ها اتفاق مى افتند و نه در داخل عضله که در ناحیه بالا در رویه بیرونى معادل 1/045 و در ناحیه پایین در رویه درونى معادل 06/ 1مى باشند. به علاوه، نتایج مى تواند به نحوه درمان صحیح و بهینه و توان بخشى بیماران و جراحى هاى ارتوپدى کمک کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Biceps Femoris Muscle Growth Based on Stretch Using a Multiscale Model

نویسندگان [English]

  • Saeed Javadi 1
  • Abdolrahman Jaamialahmadi 2
  • Ali Reza Danesh Mehr 3
  • Mohaddeseh Azadvari 4
  • Saeid Nekoonam 4
1 Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad
2 Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad
3 Mechanical Engineering, Tehran University
4 Tehran University of Medical Sciences
چکیده [English]

Understanding the process of muscle tissue growth is important to professionals who are involved in curing musculoskeletal disorders, physical medicine and rehabilitation specialists and orthopedic surgeons. This article investigates the development of a musculoskeletal cell and also determining the vulnerable areas of biceps femoris muscles due to passive strains applied on it. By decomposing the deformation gradient tensor to two parts, the elastic and growth, the finite growth relations have been applied for an isotropic hyperelastic muscle material behavior. Consequently, the continuum relations were combined with the growth evolution equation whrer a series of mechanobiological relations were obtained. To solve them, a FORTRAN user-defined material subroutine (UMAT) for the finite element Abaqus software was written and executed. The biceps femoris – long head muscle was simulated based on a 6-week period assuming as a cylinder with 10% increase in initial length. Results of the simulation indicate that maximum strains occur in the surfaces, not inside the muscle. They reach 1.045 near the proximal muscle-tendon junction in the posterior layer and 1.06 in distal muscle-junction in interior surface. Also, these results can help a correct and optimal treatment, patient’s rehabilitation and orthopedic surgeries.

کلیدواژه‌ها [English]

  • Soft tissue growth
  • Finite element analysis
  • Hyperelastic
  • Musculoskeletal
  • Simulation
[1]B.V. Reed, T. Ashikaga, B.C. Fleming, N.J. Zimny, Effects of XOWUDVRXQG and stretch on knee ligament extensibility, -RXUQDO of Orthopaedic & Sports Physical Therapy, 30(6) (2000) 341-347.
[2] W.E. Prentice, Rehabilitation 7HFKQLTXHV for Sports Medicine and Athletic Training with Laboratory 0DQXDO and ESims Password Card, McGraw-Hill (GXFDWLRQ,2005.
[3] D.P. Greene, S.L. Roberts, Kinesiology: Movement in the Context of Activity, Mosby, 1999.
[4] T. UETAKE, F. OHTSUKI, Sagittal FRQILJXUDWLRQ of spinal FXUYDWXUH line in sportsmen XVLQJ Moire WHFKQLTXH, Okajimas folia anatomica Japonica, 70(2-3) (1993) 91- 103.
[5] R.L. Lieber, Skeletal PXVFOH VWUXFWXUH, IXQFWLRQ, and plasticity, 3 ed., Lippincott Williams & Wilkins, 2009.
[6] A. Rehfeld, M. Nylander, K. Karnov, &RPSHQGLXP of Histology: A Theoretical and Practical *XLGH, Springer, 2017.
[7] G.M. Cooper, R.E. +DXVPDQ, R.E. +DXVPDQ, The cell: a PROHFXODU approach, ASM press Washington, DC, 2000.
[8] P.E. WILLIAMS, G. Goldspink, /RQJLWXGLQDO growth of striated PXVFOH fibres, -RXUQDO of cell science, 9(3) (1971) 751-767.
[9] G. Goldspink, Alterations in myofibril size and VWUXFWXUH GXULQJ growth, exercise, and changes in environmental WHPSHUDWXUH, Comprehensive Physiology,  (2011).
[10] D. Thompson, ’AW,(1917, 1942) On Growth and Form, in, Cambridge Univ. Press, 1917.
[11] D. Carter, W. Hayes, The bahavior of bone as a twophase SRURXV VWUXFWXUH, J. Bone Joint 6XUJHU, 59 (1977) 964-962.
[12] S. Cowin, D. +HJHGXV, Bone remodeling I: theory of adaptive elasticity, -RXUQDO of Elasticity, 6(3) (1976) 313326.
[13] S.C. Cowin, The mechanical and stress adaptive properties of bone, Annals of Biomedical Engineering, 11(3-4) (1983) 263-295.
[14] S.C. Cowin, Wolff’s law of WUDEHFXODU DUFKLWHFWXUH at remodeling HTXLOLEULXP, -RXUQDO of biomechanical engineering, 108(1) (1986) 83-88.
[15] S.C. Cowin, K. Firoozbakhsh, Bone remodeling of diaphysial VXUIDFHV XQGHU constant load: theoretical predictions, -RXUQDO of Biomechanics, 14(7) (1981) 471-484.
[16] F.-H. +VX, The LQIOXHQFHV of mechanical loads on the form of a growing elastic body, -RXUQDO of biomechanics,1(14) (1986) 83-88.
[17] R. Skalak, Growth as a finite displacement field, in:  Proceedings of the IUTAM VPSRVLXP on finite elasticity, Springer, 1981, pp. 347-355.
[18] K. Rajagopal, 0XOWLSOH QDWXUDO FRQILJXUDWLRQV in FRQWLQXXP mechanics. Technical Report 6, ,QVWLWXWH for &RPSXWDWLRQDO and Applied Mechanics, University of 3LWWVEXUJK.,  (1995).
[19] K. Rajagopal, A. Srinivasa, Mechanics of the inelastic behavior of materials—Part 1, theoretical XQGHUSLQQLQJV, International -RXUQDO of Plasticity, 14(10-11) (1998) 945967.
[20] S. Göktepe, O.J. Abilez, E. .XKO, A generic approach towards finite growth with examples of athlete's heart, cardiac dilation, and cardiac wall thickening, -RXUQDO of the Mechanics and Physics of Solids, 58(10) (2010) 1661-1680.
[21] D. Ambrosi, F. Mollica, On the mechanics of a growing WXPRU, International MRXUQDO of engineering science, 40(12) (2002) 1297-1316.
[22] A.A. De Smet, T.M. Best, MR imaging of the GLVWULEXWLRQ and location of DFXWH hamstring LQMXULHV in athletes, American -RXUQDO of Roentgenology, 174(2) (2000) 393-399.
[23] T.A. Järvinen, T.L. Järvinen, M. Kääriäinen, H. Kalimo, M. Järvinen, 0XVFOH LQMXULHV: biology and treatment, The American MRXUQDO of sports medicine, 33(5) (2005) 745-764.
[24] D.G. Thelen, E.S. &KXPDQRY, D.M. Hoerth, T.M. Best, S.C. Swanson, L. Li, M. <RXQJ, B.C. Heiderscheit, Hamstring PXVFOH kinematics GXULQJ treadmill sprinting, Med Sci Sports Exerc, 37(1) (2005) 108-114.
[25] E.K. 5RGULJXH], A. Hoger, A.D. 0F&XOORFK, Stressdependent finite growth in soft elastic WLVVXHV, -RXUQDO of biomechanics, 27(4) (1994) 455-467.
[26] E.H. Lee, Elastic-plastic deformation at finite strains, -RXUQDO of applied mechanics, 36(1) (1969) 1-6.
[27] A. Menzel, E. .XKO, Frontiers in growth and remodeling, Mechanics research FRPPXQLFDWLRQV, 42 (2012) 1-14.
[28] W.M. Lai, D.H. 5XELQ, E. Krempl, D. 5XELQ, ,QWURGXFWLRQ to FRQWLQXXP mechanics, %XWWHUZRUWK-Heinemann, 2009.
[29] Y. /LX, H. Zhang, Y. Zheng, S. Zhang, B. Chen, A nonlinear finite element model for the stress analysis of soft solids with a growing mass, International -RXUQDO of Solids and 6WUXFWXUHV, 51(17) (2014) 2964-2978.
[30] A.M. Zöllner, O.J. Abilez, M. Böl, E. .XKO, Stretching skeletal PXVFOH: chronic PXVFOH lengthening WKURXJK sarcomerogenesis, PloS one, 7(10) (2012) e45661.
[31] E. .XKO, Growing matter: A review of growth in living systems, -RXUQDO of the Mechanical Behavior of Biomedical Materials, 29 (2014) 529-543.
[32] N.J. O'Dwyer, P.D. Neilson, J. Nash, Mechanisms of PXVFOH growth related to PXVFOH FRQWUDFWXUH in cerebral palsy, Developmental Medicine and Child 1HXURORJ, 31(4) (1989) 543-547.
[33] A.M. Zöllner, J.M. Pok, E.J. McWalter, G.E. Gold, E. .XKO, On high heels and short PXVFOHV: a PXOWLVFDOH model for sarcomere loss in the JDVWURFQHPLXV PXVFOH, -RXUQDO of theoretical biology, 365 (2015) 301-310.
[34] G.A. Holzapfel, Nonlinear solid mechanics: a FRQWLQXXP approach for engineering science, Meccanica, 37(4) (2002) 489-490.
[35] L.A. Taber, Biomechanical Growth Laws for 0XVFOH 7LVVXH, -RXUQDO of Theoretical Biology, 193(2) (1998) 201-213.
[36] V.A. /XEDUGD, A. Hoger, On the mechanics of solids with a growing mass, International -RXUQDO of Solids and 6WUXFWXUHV, 39(18) (2002) 4627-4664.
[37] A. 6.13, Analysis User's 0DQXDO. 6LPXOLD. 'DVVDXOW Systemes,  (2013).
[38] A.M. Zöllner, M.A. Holland, K.S. Honda, A.K. Gosain, E. .XKO, Growth on demand: reviewing the mechanobiology of stretched skin, -RXUQDO of the mechanical behavior of biomedical materials, 28 (2013) 495-509.
[39] L. Beltran, V. Ghazikhanian, M. Padron, J. Beltran, The proximal hamstring PXVFOH–tendon–bone XQLW: A review of the normal anatomy, biomechanics, and pathophysiology, (XURSHDQ MRXUQDO of radiology, 81(12) (2012) 3772-3779.
[40] N. Palastanga, R. Soames, Anatomy and KXPDQ movement, VWUXFWXUH and IXQFWLRQ with PAGEBURST access, 6: anatomy and KXPDQ movement, Elsevier Health Sciences, 2011.
[41] P. =LRXSRV, J. &XUUH, Changes in the stiffness, strength, and WRXJKQHVV of KXPDQ cortical bone with age, Bone, 22(1) (1998) 57-66.
[42] C.N. Maganaris, J.P. 3DXO, Tensile properties of the in vivo KXPDQ JDVWURFQHPLXV tendon, -RXUQDO of biomechanics, 35(12) (2002) 1639-1646.
[43] G. Himpel, E. .XKO, A. Menzel, P. Steinmann, &RPSXWDWLRQDO modelling of isotropic PXOWLSOLFDWLYH growth, Comp Mod Eng Sci, 8 (2005) 119-134.
[44] M.K. &KDNRXFK, F. &KDUOHX[, S.F. %HQVDPRXQ, 4XDQWLILQJ the elastic property of nine thigh PXVFOHV XVLQJ magnetic resonance elastography, PloS one, 10(9) (2015) e0138873.
[45] C. &KDQDXG, C. Pratt, G. Loeb, )XQFWLRQDOO complex PXVFOHV of the cat hindlimb. II. Mechanical and DUFKLWHFWXUDO heterogenity within the biceps femoris, Experimental brain research, 85(2) (1991) 257-270.
[46] S. Göktepe, A. Menzel, E. .XKO, The generalized Hill model: A kinematic approach towards active PXVFOH contraction, -RXUQDO of the Mechanics and Physics of Solids, 72 (2014) 20-39.