[1] D.D. Swartz, S.T. Andreadis, Animal models for vascular tissue-engineering, Current opinion in biotechnology, 24(5) (2013) 916-925.
[2] S.E. Nissen, S.J. Nicholls, I. Sipahi, P. Libby, J.S. Raichlen, C.M. Ballantyne, J. Davignon, R. Erbel, J.C. Fruchart, J.-C. Tardif, Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial, Jama, 295(13) (2006) 1556-1565.
[3] L. Xue, H.P. Greisler, Biomaterials in the development and future of vascular grafts, Journal of vascular surgery, 37(2) (2003) 472- 480.
[4] B.C. Isenberg, C. Williams, R.T. Tranquillo, Small-diameter artificial arteries engineered in vitro, Circulation research,, 98(1) (2006) 25-35.
[5] R. Guidoin, R. Snyder, J. Awad, M. King, Biostability of vascular prostheses, in: Cardiovascular biomaterials, Springer, 1992, pp. 143-172.
[6] A. Hasan, A. Memic, N. Annabi, M. Hossain, A. Paul, M.R. Dokmeci, F. Dehghani, A. Khademhosseini, Electrospun scaffolds for tissue engineering of vascular grafts, Acta biomaterialia, 10(1) (2014) 11-25.
[7] S. Ramakrishna, An introduction to electrospinning and nanofibers, World Scientific 2005
[8] J.-H. He, Y.-Q. Wan, L. Xu, Nano-effects, quantum-like properties in electrospun nanofibers, Chaos, Solitons & Fractals, (2007) 26-37.
[9] J. Heyligers, C. Arts, H. Verhagen, P.G. De Groot, F. Moll, Improving small-diameter vascular grafts: From the application of an endothelial cell lining to the construction of atissue-engineered blood vessel, Annals of vascular surgery, 19(3) (2005) 448-456.
[10] A.B. Voorhees Jr, A.H.B. Alfred Jaretzki III, The use of tubes constructed from vinyon “N” cloth in bridging arterial defects: a preliminary report, Annals of surgery, 135(3) (1952) 332.
[11] M.Y. Kariduraganavar, A.A. Kittur, R.R. Kamble, Polymer synthesis and processing, in: Natural and Synthetic Biomedical Polymers, Elsevier, 2014, pp. 1-31
[12] D. Pankajakshan, D.K. Agrawal, Scaffolds in tissue engineering of blood vessels, Canadian journal of physiology and pharmacology, 88(9) (2010) 855-873.
[13] H.w. Choi, J.K. Johnson, J. Nam, D.F. Farson, J. Lannutti, Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation, Journal of Laser Applications, 19(4) (2007) 225-231.
[14] F. Hess, History of (MICRO) vascular surgery and the development of small-caliber blood vessel prostheses (with some notes on patency rates and re endothelialization), Microsurgery, 6(2) (1985) 59-69.
[15] N. Jirofti, D. Mohebbi-Kalhori, A. Samimi, A. Hadjizadeh, G.H. Kazemzadeh, Smalldiameter vascular graft using co-electrospun composite PCL/PU nanofibers, Biomedical Materials, 13(5) (2018) 055014.
[16] H. Wu, J. Fan, C.-C. Chu, J. Wu, Electrospinning of small diameter ٣-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts, Journal of Materials Science: Materials in Medicine, 21(12) (2010) 3207-3215.
[17] D. MohebbiKalhori, M. Moreno, S. Dimitrievska, A. Ajji, M. Bureau, Design, Mechanical Optimization and Cell Seeding of Novel Non-woven PET Scaffolds, in: Tissue Engineering and Regenerative Medicine International Society EU Meeting, Galway, Ireland, 2010.
[18] D. Mohebbi-Kalhori. S. Akbari, M. Khorram, and A. Samimi, Electrospinning of Thermoplastic Polyurethane for Vascular Scaffolds, in: ISPST, Amirkabir University of Technology, Tehran, Iran, 2012.
[19] M.A.A. Mukhtar, Relationship between the Structure and Mechanical Properties of PCL Prototype Vascula Graft Reinforced with Knitted PET Fabric, Donghua University College of Textiles 2013.
[20] F. Wang, A. Mohammed, C. Li, P. Ge, L. Wang, M.W. King, Degradable/nondegradable polymer composites for in-situ tissue engineering small diameter vascular prosthesis application, Bio-medical materials and engineering, 24(6) (2014) 2127-2133.
[21] Y. Pan, X. Zhou, Y. Wei, Q. Zhang, T. Wang, M. Zhu, W. Li, R. Huang, R. Liu, J. Chen, Smalldiameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers, Scientific reports,7(1) (2017) 3615.
[22] J. Johnson, D. Ohst, T. Groehl, S. Hetterscheidt, M. Jones, Development of novel, bioresorbable, small-diameter electrospun vascular grafts, Journal of Tissue Science & Engineering, 6(2) (2015)1.
[23] M. Khodadoust, D. Mohebbi-Kalhori, N. Jirofti, Fabrication and characterization of electrospun Bi-hybrid PU/PET scaffolds for small-diameter vascular grafts applications, Cardiovascular engineering and technology, 9(1) (2018) 73-83.
[24] M. Mirbagheri, D. Mohebbi-Kalhori, N.Jirofti, Evaluation of mechanical properties and medical applications of polycaprolactone small diameter artificial blood vessels, International Journal of Basic Science in Medicine, 2(1) (2017) 58-70.
[25] N. Jirofti, D. Mohebbi Kalhori, G.H. Kazemzadeh, A. Samimi, Evaluation of biocompatibility and reaction of the immune system of the rat in single and composite electrospun nanofiber structures (PCL/PU) for tissue engineering applications, Journal of Cell & Tissue,8 (2017) 242-249.
[26] C. Chen, L. Wang, Y. Huang, A novel shapestabilized PCM: electrospun ultrafine fibers based on lauric acid/polyethylene terephthalate composite, Materials Letters,, 62(20) (2008) 3515-3517.
[27] C. Chen, L. Wang, Y. Huang, Morphology and thermal properties of electrospun fatty acids/ polyethylene terephthalate composite fibers as novel form-stable phase change materials Solar Energy Materials and Solar Cells, 92(11) (2008) 1382-1387.
[28] H. Karakaş, A. Sarac, T. Polat, E. Budak, S. Bayram, N. Daģ, S. Jahangiri, Polyurethane nanofibers obtained by electrospinning process, World Academy of Science, Engineering and Technology, 7 (2013) 498-501.
[29] S. Chen, J. An, L. Weng, Y. Li, H. Xu, Y. Wang, D. Ding, D. Kong, S. Wang, Construction and biofunctional evaluation of electrospun vascular graft loaded with selenocystamine for in situ catalytic generation of nitric oxide, Materials Science and Engineering: C, 45 (2014) 491-496.
[30] F. Ajalloueian, M.L. Lim, G. Lemon, J.C. Haag, Y. Gustafsson, S. Sjöqvist, A. BeltránRodríguez, C. Del Gaudio, S. Baiguera, A. Bianco, Biomechanical and biocompatibility characteristics of electrospun polymeric tracheal scaffolds, Biomaterials, 35(20) (2014) 5307-5315.