به‌کارگیری شبکه‌های غیرانطباقی درخت چهارتایی در روش المان محدود

نوع مقاله : مقاله پژوهشی

نویسنده

دانشگاه آزاد اسلامی واحد شیراز

چکیده

در روش المان محدود استاندارد، وجوه المان‌های مجاور کاملاً بر یکدیگر منطبق بوده و گوشه یک المان بر وجه یک المان دیگر قرار ندارد. در صورتی‌که گره گوشه‌ای یک المان بر روی وجه المان همسایه واقع شود گفته می‌شود که شبکه غیرانطباقی است. استفاده از چنین شبکه‌هایی در روش المان محدود به تکنیک‌های ویژه‌ای نیاز دارد. در مقاله حاضر، یک روش جدید برای استفاده از شبکه‌های غیرانطباقی پیشنهاد شده است. درخت چهارتایی یک ساختمان داده درختی با یک الگوریتم بازگشتی بسیار سریع است و می‌توان از آن جهت شبکه‌بندی نواحی دوبعدی استفاده کرد. المان‌های تولید شده با این روش غیرانطباقی بوده و قابلیت استفاده در روش المان محدود استاندارد را ندارند. در مقاله حاضر ایده جدیدی جهت محاسبه توابع شکل چنین المان‌هایی پیشنهاد شده است. در این روش از حل یک مسئله مقدار مرزی برای استخراج توابع شکل استفاده شده است. شرایط مرزی در این مسئله به ‌نحوی انتخاب شده است که تغییرات توابع شکل در بین هر دو گره مجاور خطی باشد. برای بررسی دقت و کارآیی روش پیشنهادی دو مثال عددی حل شده و نتایج ارائه گردیده است. نتایج نشان می‌دهد که با استفاده از روش پیشنهادی می‌توان از شبکه‌های غیرانطباقی به‌طور موثری در روش المان محدود استفاده کرد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Nonconforming Quadtree Grids in the Finite Element Method

نویسنده [English]

  • Mohammad Javad Kazemzadeh-Parsi
چکیده [English]

In the standard finite element method, the edges of the adjacent elements are aligned to each other, and the corner of an element does not locate on the edges of another one. If this constraint violates, the mesh is called non-conforming and the use of such meshes in the finite element method requires specific techniques. In the present paper, a new method is suggested for treating non-conforming meshes. Non-conforming meshes appear generally in adaptive mesh refinement processes especially in the quadtree mesh refinement algorithm. The quadtree is a data structure with an extremely fast recursive algorithm and is used to divide a two-dimensional domain into sub-regions or elements. In the present paper, a new approach is proposed to construct the shape functions of such elements. In this method, the shape functions are considered harmonic functions and the Laplace boundary value problem is defined and its solution is used as the shape functions of the non-conforming elements. To evaluate the applicability and accuracy of the proposed method, two numerical examples are solved and the results are presented. The results show that the proposed method can be used to effectively apply the non-conforming meshes in the finite element method.

کلیدواژه‌ها [English]

  • Quadtree meshes
  • non-conforming meshes
  • Finite element method
  • Shape function
[1] M.J. Kazemzadeh-Parsi and F. Daneshmand, Solution of geometric inverse heat conduction problems by smoothed fixed grid finite element method, Finite Elements in Analysis and Design, 45 (2009) 599-611.
[2] M.J. Kazemzadeh-Parsi and F. Daneshmand, Three dimensional smoothed fixed grid finite element method for the solution of unconfined seepage problems, Finite Elements in Analysis and Design, 64 (2013) 24-35.
[3] M.J. Kazemzadeh-Parsi, Optimal shape design for heat conduction using smoothed fixed grid finite element method and modified firefly algorithm, Iranian Journal of Science and Technology, 39(M2) (2015) 367-387.
[4] H. Samet, Application of Spatial Data Structure, Addison-Wesley, NewYork, 1990.
[5] N. Provatas, N. Goldenfeld, J. Dantzig, Adaptive mesh refinement computation of solidification microstructures using dynamic data structures, Journal of Computational Physics 148(1) (1999) 265-290.
[6] P.D. Stolfo, A. Schroder, N. Zander, S. Kollmannsberger, An easytreatmentofhangingnodesin hp-finiteelements, Finite Elements in Analysis and Design, 121 (2016) 101-117.
[7] A. Tabarraei, N. Sukumar, Adaptive computations on conforming quadtree meshes, Finite Elements in Analysis and Design, 41 (2005) 686-702.
[8] S. Natarajan, E.T. Ooi, C. Song, Finite element computations over quadtree meshes: strain smoothing and semi-analytical formulation, International Journal of Advances in Engineering Sciences and Applied Mathematics, 7(3) (2015) 124-133.
[9] T.P. Fries, A. Byfut, A. Alizada, K.W. Cheng, A. Schroder, Hanging nodes and XFEM, International Journal for Numerical Methods in Engineering, 86 (2011) 404-430.
[10] M.J. Kazemzadeh-Parsi and F. Daneshmand, Finite element method: A practical course, Islamic Azad University Press, Shiraz Branch, Shiraz, 2011, (In Persian).
[11] N.H. Asmar, Partial differential equations with Fourier series and boundary value problems, Pearson Prentice Hall, New Jersey, 2005.