تحلیل دوبعدی الکتروالاستیک استوانه‌های جدار ضخیم پیزوالکتریک با استفاده از نظریه‌های تغییر شکل برشی و پتانسیل الکتریکی مرتبه یک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه جامدات، دانشکده مهندسی مکانیک و مکاترونیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 صنعتی شاهرود

چکیده

امروزه، عملگرها و حسگرها، جایگاه ویژه‌ای در جهان علم و صنعت دارند. بنابراین تحلیل الکتروالاستیک مواد پیزوالکتریک از موضوعات مورد توجه‌ پژوهشگران بوده تا بتوانند درک صحیحی از رفتار سازه‌‌ها بیابند و با بهینه‌سازی آن‌ها، گام مؤثری در طراحی و ساخت سازه‌ها بردارند. در پژوهش حاضر با استفاده از روش انرژی، نظریه‌ تغییر شکل برشی مرتبه‌ یک و نظریه پتانسیل الکتریکی مرتبه یک، معادلات حاکم استوانه‌ها‌ی جدار ضخیم پیزوالکتریک که تحت بارگذاری الکتریکی و مکانیکی در لایه‌های داخلی و خارجی استوانه و دارای شرایط مرزی مختلف در دو سر استوانه، استخراج شده است. سپس یک حلّ تحلیلی و ریاضی برای دستگاه معادلات حاکم بر پوسته استوانه‌ای ارائه می‌شود و با استفاده از این حل، نتایج مربوط به رفتار الکترومکانیکی استوانه برای شرایط مرزی مختلف الکتریکی و مکانیکی استخراج شده و با نتایج عددی حاصل از روش اجزای محدود مقایسه و بررسی می‌شوند. حل تحلیلی ارائه شده در این پژوهش، زیرمجموعه حل‌های سری‌گونه نیست و نیاز به بررسی همگرایی پاسخ ندارد. هم‌چنین حل ارائه ‌شده، از حجم محاسباتی کم‌تری نسبت به حل‌های سری‌گونه برخوردار است. نتایج به‌دست آمده از دو روش تحلیلی و عددی، دارای تطابق خوبی بوده و نشان می‌دهند که حل تحلیلی ارائه شده با دقّت مطلوب، قابل استفاده می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

2-Dimensional Electroelastic Analysis of Piezoelectric Cylinders Using First-Order Shear Deformation and First-Order Electric Potential Theories

نویسندگان [English]

  • Mohammad Parhizkar Yaghoobi 1
  • Mahdi Ghannad 2
1 Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, Iran
2
چکیده [English]

Today, sensors and actuators have a special place in the science and industry world. Therefore, the electromechanical analysis of piezoelectric materials is one of the topics of interest for researchers. To that effect, besides understanding the behavior of piezoelectric structures by optimizing this behavior, they could facilitate designing and manufacturing structures. In this study, using the first-order shear deformation theory and the first-order electrical potential theory and applying the energy method, the governing equations are extracted for thick piezoelectric cylinders subjected to mechanical and electrical loading at their internal and external surfaces under various boundary conditions in two cylinder heads. Then an analytical solution is presented for the governing equations. Using this solution, the results of the electromechanical behavior of the cylinders under different boundary conditions in two cylinder heads are estimated and evaluated. Then these results are compared with the finite element method’s results. The analytical solution is not a series solution, and therefore there would be no need to investigate the convergence. Furthermore, it is of less computational volume. The results obtained from the analytical method and the finite element method have a good agreement, showing that the presented analytical solution can be used with higher accuracy.

کلیدواژه‌ها [English]

  • Thick cylinder
  • Piezoelectric
  • Shear deformation theory
  • First-order electrical potential theory
[1] E. Ventsel, T. Krauthammer, Thin Plates and Shells: Theory: Analysis, and Applications, CRC Press, 2001.
[2] H.S. Tzou, R.V. Howard, A Piezothermoelastic Thin Shell Theory Applied to Active Structures, Journal of Vibration and Acoustics, 116(3) (1994) 295-302.
[3] H. Tzou, Y. Bao, A theory on anisotropic piezothermoelastic shell laminates with sensor/actuator applications, Journal of Sound and Vibration, 184(3) (1995) 453-473.
[4] S. Kapuria, P. Dumir, S. Sengupta, Exact piezothermoelastic axisymmetric solution of a finite transversely isotropic cylindrical shell, Computers & structures, 61(6) (1996) 1085-1099.
[5] A. Benjeddou, Advances in piezoelectric finite element modeling of adaptive structural elements: a survey, Computers & Structures, 76(1-3) (2000) 347-363.
[6] X.-H. Wu, Y.-P. Shen, C. Chen, An exact solution for functionally graded piezothermoelastic cylindrical shell as sensors or actuators, Materials Letters, 57(22-23) (2003) 3532-3542.
[7] A. Benjeddou, O. Andrianarison, A thermopiezoelectric mixed variational theorem for smart multilayered composites, Computers & structures, 83(15-16) (2005) 1266-1276.
[8] C.-P. Wu, Y.-H. Tsai, Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux, International Journal of Engineering Science, 45(9) (2007) 744-769.
[9] C.-P. Wu, Y.-S. Syu, Exact solutions of functionally graded piezoelectric shells under cylindrical bending, International Journal of Solids and Structures, 44(20) (2007) 6450-6472.
[10] H.-L. Dai, L. Hong, Y.-M. Fu, X. Xiao, Analytical solution for electromagnetothermoelastic behaviors of a functionally graded piezoelectric hollow cylinder, Applied Mathematical Modelling, 34(2) (2010) 343-357.
[11] H.-L. Dai, X. Xiao, Y.-M. Fu, Analytical solutions of stresses in functionally graded piezoelectric hollow structures, Solid State Communications, 150(15-16) (2010) 763-767.
[12] X.-F. Li, X.-L. Peng, K.Y. Lee, Radially polarized functionally graded piezoelectric hollow cylinders as sensors and actuators, European Journal of Mechanics-A/Solids, 29(4) (2010) 704-713.
[13] Z. Taotao, S. Zhifei, Analytical solutions of two kinds of piezoelectric actuators under shearing load, Smart Materials and Structures, 19(11) (2010) 115023.
[14] T. Zhang, Z. Shi, Exact analyses for two kinds of piezoelectric hollow cylinders with graded properties, Smart Struct. Syst, 6(8) (2010) 975-989.
[15] H. Wang, Parametric Analysis of Composite Cylinders with an Embedded Exponentially Graded Piezoelectric Layer, Journal of Thermoplastic Composite Materials, 24(1) (2011) 13-28.
[16] C.-P. Wu, T.-C. Tsai, Exact solutions of functionally graded piezoelectric material sandwich cylinders by a modified Pagano method, Applied Mathematical Modelling, 36(5) (2012) 1910-1930.
[17] G. Rahimi, M. Arefi, M. Khoshgoftar, Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method, Mechanics, 18(3) (2012) 292-300.
[18] M. Arefi, G. Rahimi, Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity, Acta Mechanica, 223(1) (2012) 63-79.
[19] H.-L. Dai, T. Dai, H.-Y. Zheng, Stresses distributions in a rotating functionally graded piezoelectric hollow cylinder, Meccanica, 47(2) (2012) 423-436.
[20] A. Ghorbanpour, A. Loghman, A. Abdollahitaheri, V. Atabakhshian, Electrothermomechanical behavior of a radially polarized rotating functionally graded piezoelectric cylinder, Journal of Mechanics of Materials and Structures, 6(6) (2011) 869-882.
[21] M. Arefi, G. Rahimi, M. Khoshgoftar, Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field, Smart Structures and Systems, 9(5) (2012) 427-439.
[22] J.J. Fesharaki, V.J. Fesharaki, M. Yazdipoor, B. Razavian, Two-dimensional solution for electro-mechanical behavior of functionally graded piezoelectric hollow cylinder, Applied Mathematical Modelling, 36(11) (2012) 5521-5533.
[23] M. Jabbari, M. Meshkini, M. Eslami, Nonaxisymmetric mechanical and thermal stresses in FGPPM hollow cylinder, Journal of Pressure Vessel Technology, 134(6) (2012) 061212.
[24] A. Loghman, H. Parsa, Exact solution for magneto-thermo-elastic behaviour of double-walled cylinder made of an inner FGM and an outer homogeneous layer, International Journal of Mechanical Sciences, 88 (2014) 93-99.
[25] M. Jabbari, M.B. Aghdam, Asymmetric Thermal Stresses of Hollow FGM Cylinders with Piezoelectric Internal and External Layers, Journal of Solid Mechanics, 7(3) (2015) 327-343.
[26] H.-L. Dai, H.-J. Jiang, Magnetothermoelastic bending analysis of a functionally graded material cylindrical shell, Mechanics of Advanced Materials and Structures, 22(4) (2015) 281-289.
[27] A. Atrian, J.J. Fesharaki, S. Nourbakhsh, Thermo-electromechanical behavior of functionally graded piezoelectric hollow cylinder under non-axisymmetric loads, Applied Mathematics and Mechanics, 36(7) (2015) 939-954.
[28] M. Jabbari, M. Zamani Nejad, Electro-mechanical Analysis of Rotating Cylinder Made of Functionally Graded Piezoelectric Materials: Sensor and Actuator, Amirkabir Journal of Mechanical Engineering, 51(1) (2019) 215-224 (in Persian).
[29] A. Fernandes, J. Pouget, Structural response of composite plates equipped with piezoelectric actuators, Computers & structures, 84(22-23) (2006) 1459-1470.
[30] M. Parhizkar Yaghoobi, I. Ghaffari, M. Ghannad, Stress and active control analysis of functionally graded piezoelectric material cylinder and disk under electro-thermo-mechanical loading, Journal of Intelligent Material Systems and Structures, 29(5) (2018) 924-937.
[31] M. Ghannad, M. Parhizkar Yaghoobi, A thermoelasticity solution for thick cylinders subjected to thermo-mechanical loads under various boundary conditions, ADMT Journal, 8(4) (2015) 1-11.
[32] M. Ghannad, M.P. Yaghoobi, 2D thermo elastic behavior of a FG cylinder under thermomechanical loads using a first order temperature theory, International Journal of Pressure Vessels and Piping, 149 (2017) 75-92.
[33] X. Wang, Z. Zhong, The general solution of spherically isotropic magnetoelectroelastic media and its applications, European Journal of Mechanics-A/Solids, 22(6) (2003) 953-969.
[34] A. Zingoni, Structural Engineering, Mechanics and Computation: SEMC 2001 (2 Volume Set), Elsevier, 2001.
[35] I. Ghaffari, M.P. Yaghoobi, M. Ghannad, Complete mechanical behavior analysis of FG Nano Beam under non-uniform loading using non-local theory, Materials Research Express, 5(1) (2018) 015016.
[36] P. Hagedorn, A. DasGupta, Vibrations and waves in continuous mechanical systems, Wiley Online Library, 2007.
[37] J. Yang, The mechanics of piezoelectric structures, World Scientific, 2006.