افت انتقال صوت پوسته‌های مخروطی ناقص با مواد متخلخل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 خواجه نصیر*مهندسی مکانیک

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران، ایران

چکیده

یک مدل تئوری به منظور مطالعه افت انتقال صوت در یک پوسته مخروطی ناقص با لایه متخلخل معرفی می‌شود. پوسته مخروطی همسانگرد و جدار نازک است و به وسیله یک موج صوتی صفحه‌ای که به‌صورت مایل به سطح بیرونی آن برخورد می‌کند، تحریک می‌شود. از تئوری لاو جهت پیاده‌سازی معادله‌های حرکت پوسته مخروطی استفاده می‌شود، و با استفاده از یک روش حل همگرا بر پایه سری‌های توانی، پاسخ دینامیکی پوسته به‌صورت دقیق محاسبه می‌گردد. همچنین جهت مدل‌سازی انتشار موج در ماده متخلخل، از روش سیال معادل بر پایه تئوری بایو بهره گرفته می‌شود. در ابتدا، نتایج مدل حاضر با نتایج مطالعه‌های گذشته اعتبارسنجی می‌گردد. سپس، اثرات چندین پارامتر مهم طراحی همچون شرایط مرزی مختلف در دو سر پوسته مخروطی، زاویه رأس مخروط، زاویه موج صوتی برخوردی و جنس پوسته بر ویژگی‌های افت انتقال صوت این نوع سازه بررسی می‌گردد. نشان داده می‌شود مدل حاضر می‌تواند به عنوان یک ابزار موثر در مرحله طراحی صوتی پوسته‌های مخروطی ناقص به‌کار گرفته شود. به علاوه، افت انتقال صوت در حضور لایه‌ای از ماده متخلخل که در دو ساختار متفاوت به جداره پوسته متصل شده است، محاسبه می‌گردد. نتایج به‌طور کلی عملکرد مطلوب لایه متخلخل را در زمینه عایق‌بندی صوتی سازه نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sound Transmission Loss of Truncated Conical Shells with Porous Materials

نویسندگان [English]

  • ali asghar jafari 1
  • Masoud Golzari 2
1
2 Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
چکیده [English]

A theoretical model is proposed to study the sound transmission loss of a truncated conical shell with a porous layer. The isotropic thin-walled conical shell is excited by an oblique incident plane sound wave, which impinges on the outer surface of the shell. The governing equations of the shell motion are obtained by Love’s theory, and a convergent power series solution is applied to obtain the exact displacements of the shell. An equivalent fluid model based on Biot’s theory is considered to describe the wave propagation in the porous material. The model results are firstly validated against the results of prior studies. Then, the effects of several design parameters such as different boundary conditions at the ends of the shell, cone angle, incident sound wave angle and material properties of the shell are studied on the characteristics of the sound transmission loss. The proposed model can provide an effective tool in the acoustic design stage of the truncated conical shells. In addition, the transmission loss is obtained in the presence of the porous layer with two different configurations. The results generally show the desirable performance of the porous layer in the sound insulation ability.
 

کلیدواژه‌ها [English]

  • Sound transmission loss
  • Truncated conical shell
  • Porous materials
  • Plane sound wave
[1] L.L. Beranek, G.A. Work, Sound transmission through multiple structures containing flexible blankets, Journal of the Acoustical Society of America, 21 (1949) 419-428.
[2] L.R. Koval, Effect of airflow, panel curvature, and internal pressurization on field-incidence transmission loss, Journal of the Acoustical Society of America, 59 (1976) 1379–1385.
[3] J.S. Bolton, N.M Shiau, Y.J. Kang, Sound transmission through multi-panel structures lined with elastic porous materials, Journal of Sound and Vibration, 191 (1996) 317-347.
[4] T.W. Wu, A. Dandapani, A boundary element solution for sound transmission through thin plates, Journal of Sound and Vibration, 171 (1994) 145-157.
[5] B. Liu, L. Feng, A. Nilsson, Influence of overpressure on sound transmission through curved panels, Journal of Sound and Vibration, 302 (2007) 760-776.
[6] F.X. Xin, T.J. Lu, C.Q. Chen, Vibroacoustic behavior of clamp mounted double-panel partition with enclosure air cavity, Journal of the Acoustical Society of America, 124 (2008) 3604-3612.
[7] F.X. Xin, T.J. Lu, Analytical and experimental investigation on transmission loss of clamped double panels: Implication of boundary effects, Journal of the Acoustical Society of America, 125 (2009) 1506-1517.
[8] Y. Liu, A. Sebastian, Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel, Journal of Sound and Vibration, 344 (2015) 399-415.
[9] A.A. Mana, V.R. Sonti, Sound transmission through a finite perforated panel set in a rigid baffle: A fully coupled analysis, Journal of Sound and Vibration, 414 (2018) 126-156.
[10] J.P.W. Smith, Sound transmission through thin cylindrical shells, Journal of the Acoustical Society of America, 29 (1957) 721-729.
[11] L.R. Koval, On sound transmission into a thin cylindrical shell under “flight Conditions”, Journal of Sound and Vibration, 48 (1976) 265-275.
[12] L.R. Koval, Effects of cavity resonance on sound transmission into a thin cylindrical shell, Journal of Sound and Vibration, 59 (1978) 23-33.
[13] L.R. Koval, On sound transmission into a stiffened cylindrical shell with rings and stringers treated as discrete elements, Journal of Sound and Vibration, 71 (1980) 511-521.
[14] L.R. Koval, On sound transmission into an orthotropic shell, Journal of Sound and Vibration, 63 (1979) 51-59.
[15] L.R. Koval, Sound transmission into a laminated composite cylindrical shell, Journal of Sound and Vibration, 71 (1980) 523-530.
[16] A. Blaise, C. Lesueur, Acoustic transmission through a 2-D orthotropic multilayered infinite cylindrical shell, Journal of Sound and Vibration, 155 (1992) 95-109.
[17] A. Blaise, C. Lesueur, Acoustic transmission through a 3-D orthotropic multilayered infinite cylindrical shell. Part I: Formulation of the problem, Journal of Sound and Vibration, 171 (1994) 651-664.
[18] A. Blaise, C. Lesueur, Acoustic transmission through a 3-D orthotropic multilayered infinite cylindrical shell. Part II: Validation and numerical exploitation for large structures, Journal of Sound and Vibration, 171 (1994) 665-680.
[19] J.H. Lee, J. Kim, Analysis and measurement of sound transmission through a double-walled cylindrical shell, Journal of Sound and Vibration, 251 (2002) 631-649.
[20] J.H. Lee, J. Kim, Study on sound transmission characteristics of a cylindrical shell using analytical and experimental models, Applied Acoustics, 64 (6) (2003) 611-632.
[21] H. Denli, J.Q. Sun, Structural-acoustic optimization of sandwich cylindrical shells for minimum interior sound transmission, Journal of Sound and Vibration, 316 (2008) 32-49.
[22] J. Zhou, A. Bhaskar, X. Zhang, The effect of external mean flow on sound transmission through double-walled cylindrical shells lined with poroelastic material, Journal of Sound and Vibration, 333 (2014) 1972-1990.
[23] R. Talebitooti, K. Daneshjou, M. Kornokar, Three dimensional sound transmission through poroelastic cylindrical shells in the presence of subsonic flow, Journal of Sound and Vibration, 363(2016) 380-406.
[24] P. Oliazadeh, A. Farshidianfar, Analysis of different techniques to improve sound transmission loss in cylindrical shells, Journal of Sound and Vibration, 389 (2017) 276-291.
[25] P. Oliazadeh, A. Farshidianfar, M.J. Crocker, Experimental and analytical investigation on sound transmission loss of cylindrical shells with absorbing material, Journal of Sound and Vibration, 434 (2018) 28-43.
[26] M. Golzari, A.A. Jafari, Sound transmission loss through triple-walled cylindrical shells with porous layers, Journal of the Acoustical Society of America, 143 (2018) 3529-3544.
[27] J.S. Vipperman, D. Li, I. Avdeev, S.A. Lane, Investigation of the sound transmission into an advanced grid-stiffened structure, Journal of vibration and Acoustics, 125 (2003) 257-266.
[28] S.S. Rao, Vibration of Continuous Systems, John Wiley & Sons, New Jersey, 2007.
[29] W. Leissa, Vibration of Shells, NASA, Washington, D.C., 1973.
[30] L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, fourth ed., John Wiley & Sons, New York, 2000.
[31] M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid I. Low-frequency range. II. Higher frequency range, Journal of the Acoustical Society of America, 28(2) (1956) 168-191.
[32] J. H. Lee, J. Kim, and H. J. Kim, Simplified method to solve sound transmission through structures lined with elastic porous material, Journal of the Acoustical Society of America, 110 (5) (2001) 2282-2294.
[33] Y. Liu, and C. He, Diffuse field sound transmission through sandwich composite cylindrical shells with poroelastic core and external mean flow, Composite Structures 135 (2016) 383-396.
[34] Y. Liu, Sound transmission through triple-panel structures lined with poroelastic materials, Journal of Sound and Vibration, 339 (2015) 376-395.
[35] L.L. Beranek, Acoustics, McGraw-Hill, New York, 1954.
[36] E. Szechenyi, Sound transmission through cylinder walls using statistical considerations, Journal of Sound and Vibration, 19 (1971) 83-94.