طراحی مسیر و کنترل ربات سیار اجتماعی در محیط با موانع متحرک به‌منظور رسیدن به هدف سیار با استفاده از کنترل فازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی مکانیک دانشگاه علم و صنعت ایران

2 علم و صنعت*مهندسی مکانیک

3 آزمایشگاه رباتیک دانشکده مهندسی مکانیک دانشگاه علم و صنعت ایران

چکیده

در این مقاله، طراحی یک سیستم کنترل فازی به‌منظور مسیریابی و کنترل ربات سیار در محیط اجتماعی با حضور موانع مورد بررسی قرار می‌گیرد. الگوریتم کنترلی ارائه ‌شده با دریافت موقعیت هدف، مسیر مناسب جهت رسیدن به آن‌را بدون برخورد با موانع تولید می‌نماید. در بررسی موانع، فرض براین است که به‌صورت ثابت و متحرک ازجمله انسان در محیط حضور دارند. همچنین، حرکت ربات به‌گونه‌ای تنظیم گردیده که موجب ایجاد ترس یا تغییر رفتار حرکتی افراد نشود. سیستم فازی مورد استفاده دارای چهار ورودی (فاصله مانع با ربات، زاویه‌ی نسبی آن، سرعت نزدیک شدن به ربات و زاویه‌ی نسبی هدف) و دو خروجی (سرعت خطی و زاویه‌ای پایه‌) می‌باشد. این سیستم در حالت‌های مختلف با لحاظ حرکت موانع و هدف مورد بررسی قرار می‌گیرد. به‌منظور صحت‌سنجی این روش، علاوه بر طراحی رابط گرافیکی، سیستم طراحی ‌شده بر روی ربات آزمایشگاهی پیاده‌سازی می‌گردد. نتایج علاوه بر بیان اهمیت تعداد داده‌ ارسالی در فاصله‌‌های زمانی مشخص، اثر الگوریتم حضور مانع را نیز مشخص می‌نمایند. بنابراین نوآوری اصلی این مقاله، نحوه‌ انتخاب ورودی و خروجی‌های منطق فازی و استفاده از قواعد فازی بمنظور حرکت ربات در مجاورت موانع می‌باشد. چنین کنترلی سبب می‌گردد افرادی که نزدیک ربات تردد می‌کنند، ترس از برخورد را احساس نکنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Path Design and Control of a Moving Social Robot in an Environment with Moving Obstacles in Order to Reach a Moving Target through Fuzzy Control

نویسندگان [English]

  • seyed davood nikkhoe tanha 1
  • Moharam Habibnejad korayem 2
  • siavash fathollahi dehkordi 3
1 mechanic department
2
3 mechanic department
چکیده [English]

In this paper, the main objective is to design a fuzzy control system for path planning and controlling a moving robot in a social environment with obstacles. The proposed control algorithm establishes an appropriate path to reach the target without collision with obstacles by receiving the target position frequently. When the obstacles examined, it is assumed that fixed and moving obstacles have existed in the environment. Moreover, the robot movements are adjusted in such a way that they do not cause fear or change in human behavior. The fuzzy system used in the paper has four inputs (distance between obstacle and robot, the relative angle of the obstacle, the rate of the obstacle approaching the robot, and relative angle of the target), and two outputs (linear velocity and angles of the robot base). The suggested robotic system is examined in different states by considering diverse motions of obstacles and targets. Furthermore, the designed control system is implemented on the laboratory robot to validate the proposed method. In addition to the design of a graphical user interface, some changes have also been made to the function of its mechatronics system. Finally, the results obtained from simulation and laboratory systems are evaluated and compared.

کلیدواژه‌ها [English]

  • Fuzzy control
  • Moving robot
  • Social robot
  • Time-variant control target
  • Graphical user interface
[1] R.K. Mandava, S. Bondada, P.R. Vundavilli, An optimized path planning for the mobile robot using potential field method and PSO algorithm, in:  Soft Computing for Problem Solving, Springer, 2019, pp. 139-150.
[2] A. Iqbal, M. Iqbal, Controller Design of Two-Wheeled Differential Drive with a Passive Castor Wheel using Feedback Linearization, in:  Proceedings Of World Symposium On Computer Networks And Information Security, N&N Global Technology, (2014), pp. 87-92.
[3] M. Korayem, A. Shafei, H. Shafei, Dynamic modeling of nonholonomic wheeled mobile manipulators with elastic joints using recursive Gibbs–Appell formulation, Scientia Iranica, 19(4) (2012) 1092-1104.
[4] Z. Li, S.S. Ge, M. Adams, W.S. Wijesoma, Adaptive robust output-feedback motion/force control of electrically driven nonholonomic mobile manipulators, IEEE Transactions on Control Systems Technology, 16(6) (2008) 1308-1315.
[5] G.W. Gamage, G.K. Mann, R.G. Gosine, Discrete event systems based formation control framework to coordinate multiple nonholonomic mobile robots, in:  2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, (2009), pp. 4831-4836.
[6] Y.P. Kondratenko, P. Khalaf, H. Richter, D. Simon, Fuzzy Real-Time Multi-objective Optimization of a Prosthesis Test Robot Control System, in:  Advanced Control Techniques in Complex Engineering Systems: Theory and Applications, Springer, (2019), pp. 165-185.
[7] C.-F. Juang, T.B. Bui, Reinforcement Neural Fuzzy Surrogate-Assisted Multiobjective Evolutionary Fuzzy Systems with Robot Learning Control Application, IEEE Transactions on Fuzzy Systems,  (2019).
[8] R.R. dos Santos, V. Steffen, S. de FP Saramago, Robot path planning in a constrained workspace by using optimal control techniques, Multibody System Dynamics, 19(1-2) (2008) 159-177.
[9] D. Drake, S. Koziol, E. Chabot, Mobile robot path planning with a moving goal, IEEE Access, 6 (2018) 12800-12814.
[10] D. Ji, J. Cheng, B. Wang, Path planning for mobile robots in complex environment via laser sensor, in:  2018 Chinese Control And Decision Conference (CCDC), IEEE, (2018), pp. 2715-2719.
[11] K. Akka, F. Khaber, Optimal fuzzy tracking control with obstacles avoidance for a mobile robot based on Takagi-Sugeno fuzzy model, Transactions of the Institute of Measurement and Control,  (2018) 0142331218811462.
[12] A.M. Varghese, V. Jisha, Motion Planning and Control of an Autonomous Mobile Robot, in:  2018 International CET Conference on Control, Communication, and Computing (IC4), IEEE, (2018), pp. 17-21.
[13] A. Azzabi, K. Nouri, An advanced potential field method proposed for mobile robot path planning, Transactions of the Institute of Measurement and Control,  (2019) 0142331218824393.
[14] Y. Hu, S.X. Yang, A knowledge based genetic algorithm for path planning of a mobile robot, in:  IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004, IEEE, (2004), pp. 4350-4355.
[15] A. Haj Darwish, A. Joukhadar, M. Kashkash, Using the Bees Algorithm for wheeled mobile robot path planning in an indoor dynamic environment, Cogent Engineering, 5(1) (2018) 1426539.
[16] A.A. Zhilenkov, I.R. Epifantsev, System of autonomous navigation of the drone in difficult conditions of the forest trails, in:  2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), IEEE, (2018), pp. 1036-1039.
[17] T. Abut, S. Soyguder, Real-time control and application with self-tuning PID-type fuzzy adaptive controller of an inverted pendulum, Industrial Robot: the international journal of robotics research and application, 46(1) (2019) 159-170.
[18] A. Shukla, R. Tiwari, R. Kala, Mobile robot navigation control in moving obstacle environment using A* algorithm, Intelligent Systems Engineering Systems through Artificial Neural Networks, 18 (2008) 113-120.