کنترل ترکیبی پایداری طولی و جانبی در خودروهای سواری با در نظر گرفتن دینامیک موتور و استفاده از الگوریتم کنترل فراپیچشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز، ایران

2 دانشگاه تبریز*دانشکده مهندسی مکانیک

چکیده

یکی از مسائل پر اهمیت در مورد خودروهای سواری بحث پایداری حرکتی می‌باشد، که با توجه به اهمیت این موضوع تحقیقات زیادی در زمینه پایداری کششی و پایداری حرکت جانبی خودروها انجام گرفته است. در این مقاله، بررسی پایداری خودرو برای حرکت طولی و جانبی به‌صورت همزمان انجام گرفته است. مدل چهارچرخ خودرو برای استخراج معادلات در نظر گرفته شده و برای مدل‌سازی رفتار تایرها و جاده از مدل غیرخطی داگاف استفاده شده است. برای سیستم قدرت خودرو از مدل موتور چو با دو متغیر حالت استفاده شده است که موجب می‌شود اعمال گشتاور به چرخ‌ها به حالت عملی نزدیک‌تر باشد. برای کنترل سیستم از روش کنترل غیرخطی مد لغزشی فراپیچشی استفاده شده است که روشی مقاوم در برابر اغتشاشات و عدم قطعیت‌های مدل است. در مدل کنترلی ارائه شده برای کنترل پایداری طولی و پایداری جانبی، به ترتیب زاویة دریچه گاز و گشتاور چرخشی به عنوان ورودی و ضریب لغزش طولی و سرعت چرخشی به عنوان خروجی در نظر گرفته شده‌اند. در بخش بررسی نتایج سیستم به سه شکل مجزا در حالت‌های دارای کنترل‌کننده طولی، دارای کنترل‌کننده جانبی و در نهایت سیستم با کنترل‌کننده ترکیبی و همزمان طولی و جانبی مورد بررسی قرار گرفته است. در هر سه مورد ذکر شده به بررسی پایداری سیستم در حضور عدم قطعیت‌ها و اغتشاشات پرداخته شده است. نتایج به‌دست آمده کارآمدی روش ارائه شده را در کنترل ترکیبی پایداری طولی و جانبی نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Control of Vehicle’s Mixed Longitudinal and Lateral Stability with Engine Dynamics Using Super Twisting Control Algorithm

نویسندگان [English]

  • Sina Namdari 1
  • Saeed Rezapour Khaneghah 1
  • Mohammad Ali Hamed 2
1 Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran
2 Department of Mechanical Engineering/University of Tabriz
چکیده [English]

Vehicle stability control is one of the most important subjects in the control engineering field. Many research activities have been done to develop more comfort and safe travel for passengers. In this paper, vehicle mixed stability in longitudinal and lateral motion has been investigated. Four-wheel seven degrees of freedom model of vehicle is considered to extract the dynamic equations and closed-loop system simulation. Dugoff’s nonlinear model has been used to simulate the behavior of tires and road, and Cho’s engine model with two state variables has been used for vehicle power system simulation, so it makes the input torque to wheels to be more realistic. Because of the good robustness properties of sliding mode control, the second-order sliding mode with a super-twisting algorithm has been used for calculation of control inputs. This method is proved to be so appropriate and useful in the case of uncertainty in a complicated vehicle dynamic model and multiple disturbances in vehicle motion. Engine throttle angle and yaw moment have been considered as a longitudinal system and lateral system control inputs respectively. The longitudinal slip coefficient and yaw rate are considered as system output. Simulation results show the effectiveness of the proposed method.

کلیدواژه‌ها [English]

  • Vehicle stability
  • Mixed longitudinal and lateral stability
  • Dugoff tire model
  • Cho motor model
  • Super-twisting algorithm
[1] S. Drakunov, U. Ozguner, P. Dix, B. Ashrafi, ABS control using optimum search via sliding modes, IEEE Transactions on Control Systems Technology, 3(1) (1995) 79-85.
[2] H. Lee, M. Tomizuka, Adaptive vehicle traction force control for intelligent vehicle highway systems (IVHSs), IEEE Transactions on Industrial Electronics, 50(1) (2003) 37-47.
[3] A. Ferrara, P. Pisu, Minimum sensor second-order sliding mode longitudinal control of passenger vehicles, IEEE Transactions on Intelligent Transportation Systems, 5(1) (2004) 20-32.
[4] M. Kabganian, R. Kazemi, A new strategy for traction control in turning via engine modeling, IEEE Transactions on Vehicular Technology, 50(6) (2001) 1540-1548.
[5] S. Kang, M. Yoon, M. Sunwoo, Traction control using a throttle valve based on sliding mode control and load torque estimation, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219(5) (2005) 645-653.
[6] M. Amodeo, A. Ferrara, R. Terzaghi, C. Vecchio, Wheel slip control via second-order sliding-mode generation, IEEE Transactions on Intelligent Transportation Systems, 11(1) (2010) 122-131.
[7] S. Kuntanapreeda, Super-twisting sliding-mode traction control of vehicles with tractive force observer, Control Engineering Practice, 38 (2015) 26-36.
[8] M. Canale, L. Fagiano, M. Milanese, P. Borodani, Robust vehicle yaw control using an active differential and IMC techniques, Control Engineering Practice, 15(8) (2007) 923-941.
[9] D.-C. Liaw, W.-C. Chung, A feedback linearization design for the control of vehicle’s lateral dynamics, Nonlinear Dynamics, 52(4) (2008) 313-329.
[10] A. Elmarakbi, C. Rengaraj, A. Wheately, M. Elkady, New integrated chassis control systems for vehicle handling performance enhancement, International Journal of Dynamics and Control, 1(4) (2013) 360-384.
[11] R. Tchamna, I. Youn, Yaw rate and side-slip control considering vehicle longitudinal dynamics, International Journal of Automotive Technology, 14(1) (2013) 53-60.
[12] X.J. Jin, G. Yin, N. Chen, Gain-scheduled robust control for lateral stability of four-wheel-independent-drive electric vehicles via linear parameter-varying technique, Mechatronics, 30 (2015) 286-296.
[13] M. Emırler, K. Kahraman, M. Şentürk, O. Acar, B.A. Güvenç, L. Güvenç, B. Efendıoğlu, Lateral stability control of fully electric vehicles, International Journal of Automotive Technology, 16(2) (2015) 317-328.
[14] B. Li, H. Du, W. Li, Y. Zhang, Side-slip angle estimation based lateral dynamics control for omni-directional vehicles with optimal steering angle and traction/brake torque distribution, Mechatronics, 30 (2015) 348-362.
[15] H. Kim, S. Lee, J.K. Hedrick, Active yaw control for handling performance improvement by using traction force, International Journal of Automotive Technology, 16(3) (2015) 457-464.
[16] A.N. Asiabar, R. Kazemi, A direct yaw moment controller for a four in-wheel motor drive electric vehicle using adaptive sliding mode control, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics,  (2019) 1464419318807700.
[17] B. Li, H. Du, W. Li, Fault-tolerant control of electric vehicles with in-wheel motors using actuator-grouping sliding mode controllers, Mechanical Systems and Signal Processing, 72 (2016) 462-485.
[18] H. Zhao, W. Chen, J. Zhao, Y. Zhang, H. Chen, Modular Integrated Longitudinal, Lateral, and Vertical Vehicle Stability Control for Distributed Electric Vehicles, IEEE Transactions on Vehicular Technology, 68(2) (2019) 1327-1338.
[19] X. Ji, X. He, C. Lv, Y. Liu, J. Wu, A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation, Vehicle System Dynamics, 56(6) (2018) 923-946.
[20] X. Ji, X. He, C. Lv, Y. Liu, J. Wu, Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at driving limits, Control Engineering Practice, 76 (2018) 41-53.
[21] M. Metzler, D. Tavernini, A. Sorniotti, P. Gruber, Explicit non-linear model predictive control for vehicle stability control, in:  9th International Munich Chassis Symposium 2018, Springer, 2019, pp. 733-752.
 [22] H. Alipour, M. Sabahi, M.B.B. Sharifian, Lateral stabilization of a four wheel independent drive electric vehicle on slippery roads, Mechatronics, 30 (2015) 275-285.
[23] D.E. Smith, J.M. Starkey, Effects of model complexity on the performance of automated vehicle steering controllers: Model development, validation and comparison, Vehicle System Dynamics, 24(2) (1995) 163-181.
[24] R.N. Jazar, Vehicle dynamics: theory and application, Springer, 2017.
[25] H. Dugoff, Tire performance characteristics affecting vehicle response to steering and braking control inputs. Final report,  (1969).
[26] R. Rajamani, Vehicle dynamics and control, Springer Science & Business Media, 2011.
[27] H.B. Pacejka, E. Bakker, The magic formula tyre model, Vehicle system dynamics, 21(S1) (1992) 1-18.
[28] D. Cho, J. Hedrick, A nonlinear controller design method for fuel-injected automotive engines, Journal of Engineering for Gas Turbines and Power, 110(3) (1988) 313-320.
[29] H.K. Khalil, J.W. Grizzle, Nonlinear systems, Prentice hall Upper Saddle River, NJ, 2002.
[30] Y. Shtessel, C. Edwards, L. Fridman, A. Levant, Sliding mode control and observation, Springer, 2014.
[31] W. Perruquetti, J.-P. Barbot, Sliding mode control in engineering, CRC press, 2002.
[32] M. Aripin, Y. Md Sam, K.A. Danapalasingam, K. Peng, N. Hamzah, M. Ismail, A review of active yaw control system for vehicle handling and stability enhancement, International journal of vehicular technology, 2014 (2014).
[33] A. Ferrara, C. Vecchio, Low vibration vehicle traction control to solve fastest acceleration/deceleration problems via second order sliding modes, in:  2007 American Control Conference, IEEE, 2007, pp. 5236-5241.