برداشت انرژی با استفاده از تیر بایمورف متخلخل با لایه پیزوالکتریک تحت ارتعاشات القایی ناشی از جریان سیال خارجی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک/پژوهشکده مطالعات کاربردی سیستم های قدرت، دانشکاه شهیدمدتی آذزبایجان، تبریز، ایزان

2 دانشکده مکانیک/ گروه مهندسی مکانیک/ دانشگاه تبریز

چکیده

در این تحقیق به مطالعه برداشت انرژی توسط تیرهای متخلخل واقع در معرض جریان سیال خارجی پرداخته می‌شود. معادلات دیفرانسیل غیرخطی الکترومکانیکی کوپل حاکم بر رفتار ارتعاشات عرضی تیر متخلخل واقع در معرض جریان سیال خارجی با استفاده از تئوری تیر اویلر-برنولی استخراج شده است. تیر متخلخل یکسرگیردار با جرم متمرکز در انتهای آن که مجهز به یک لایه پیزوالکتریک در سطح بالایی خود است، به عنوان برداشت کننده انرژی در نظر گرفته شده و بعد از حل عددی معادلات غیرخطی حاکم به بررسی تأثیر پارامترهای مختلف بر انرژی تولید شده پرداخته می‌شود. نتایج نشان می‌دهد که در ناحیه قفل‌شدگی میزان برداشت انرژی حداکثر مقدار دارد. همچنین، توزیع تخلخل تأثیر قابل ملاحظه‌ای بر حداکثر دامنه نوسانات و همچنین انرژی برداشت شده توسط تیر متخلخل دارد و ناحیه قفل‌شدگی برای تیر با توزیع تخلخل متقارن، توزیع تخلخل نامتقارن و توزیع تخلخل یکنواخت در محدود سرعت  می‌باشد. علاوه بر این، به ازای مقاومت الکتریکی kΩ 1000، حداکثر ولتاژ تولید شده برای تیر با توزیع تخلخل متقارن به صورت سخت‌شوندگی در جداره، توزیع تخلخل نامتقارن و توزیع تخلخل یکنواخت به ترتیب برابر با V 0/39، V 0/44 و V 0/57 می‌باشد که نشان دهنده بیشترین قابلیت برداشت انرژی مربوط به تیر با توزیع تخلخل نوع سوم می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Piezoelectric Energy Harvesting Using a Porous Beam Under Fluid-Induced Vibrations

نویسندگان [English]

  • Mohsen Fallah 1
  • vahid Arab Maleki 2
1 Mechanical engineering group, Azarbaijan Shahid Madani University
2 Department of Mechanical Engineering/ University of Tabriz
چکیده [English]

In this paper, the energy harvesting by porous beams exposed to the external fluid flow is studied. The electromechanical nonlinear differential equations of the transverse vibration behavior of porous beams exposed to external fluid flow are derived using the Euler-Bernoulli beam theory. A porous beam with concentrated mass which is equipped with a piezoelectric layer at its upper surface is considered energy harvesting. After numerically solving the governing nonlinear equations, the effect of different parameters on the generated energy is investigated. The results show that in the lock-in area, the maximum amount of energy is taken. Also, the porosity distribution has a significant effect on the maximum amplitude of the oscillations as well as the energy harvesting by the porous beam. In addition, for electrical resistance of 1000 kΩ, the maximum voltage generated for the beam with symmetrical porosity distribution in the form of wall stiffness, asymmetric porosity distribution, and uniform porosity distribution is equal to 0.39 V, 0.44 V, and 57 V, respectively, which indicates the highest energy harvesting capability of the beam with the porosity distribution of the third type.

کلیدواژه‌ها [English]

  • Energy harvesting
  • Porous beam
  • Fluid induced vibrations
  • Lock-in region
[1]R. Thomson, J. Hancock, Stress and strain fields near a contained porous imperfection in a plastically deforming matrix, Res mechanica, 16(2) (1985) 135-146.
[2]K. Xie, Y. Wang, H. Niu, H. Chen, Large-amplitude nonlinear free vibrations of functionally graded plates with porous imperfection: A novel approach based on energy balance method, Composite Structures, 246 (2020) 345-367.
[3]R. Kumhar, S. Kundu, M. Maity, S. Gupta, Analysis of interfacial imperfections and electro-mechanical properties on elastic waves in porous piezo-composite bars, International Journal of Mechanical Sciences, 187 (2020) 105-126.
[4]L.A.H. Kunbar, L.B. Hamad, R.A. Ahmed, N.M. Faleh, Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects, Smart Structures and Systems, 25(5) (2020) 619-630.
[5]S.S. Mirjavadi, M. Forsat, M.R. Barati, A. Hamouda, Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection, Steel and Composite Structures, 35(4) (2020) 567-578.
[6]E. Salari, S.S. Vanini, A. Ashoori, A. Akbarzadeh, Nonlinear thermal behavior of shear deformable FG porous nanobeams with geometrical imperfection: Snap-through and postbuckling analysis, International Journal of Mechanical Sciences, 178 (2020) 603-615.
[7]Y. Huo, S. Ren, Z. Wei, G. Yi, Standing Wave Binding of Hemispherical Resonator Containing First–Third Harmonics of Mass Imperfection under Linear Vibration Excitation, Sensors, 20(19) (2020) 38-54.
[8]H.B. Khaniki, M.H. Ghayesh, S. Hussain, M. Amabili, Porosity, mass and geometric imperfection sensitivity in coupled vibration characteristics of CNT-strengthened beams with different boundary conditions, Engineering with Computers, 45 (2020) 1-27.
[9]X. Ma, Z. Su, Analysis and compensation of mass imperfection effects on 3-D sensitive structure of bell-shaped vibratory gyro, Sensors and Actuators A: Physical, 224 (2015) 14-23.
[10]B. Zhang, S. Liu, Y.C. Shin, In-Process monitoring of porosity during laser additive manufacturing process, Additive Manufacturing, 28 (2019) 497-505.
[11]W. Meng, Z. Li, F. Lu, Y. Wu, J. Chen, S. Katayama, Porosity formation mechanism and its prevention in laser lap welding for T-joints, Journal of Materials Processing Technology, 214(8) (2014) 1658-1664.
[12]A. Matsunawa, M. Mizutani, S. Katayama, N. Seto, Porosity formation mechanism and its prevention in laser welding, Welding international, 17(6) (2003) 431-437.
[13]R. Fu, S. Tang, J. Lu, Y. Cui, Z. Li, H. Zhang, T. Xu, Z. Chen, C. Liu, Hot-wire arc additive manufacturing of aluminum alloy with reduced porosity and high deposition rate, Materials & Design, 199 (2021) 34-51.
[14]A. Sola, A. Nouri, Microstructural porosity in additive manufacturing: The formation and detection of pores in metal parts fabricated by powder bed fusion, Journal of Advanced Manufacturing and Processing, 1(3) (2019) 87-95.
[15]D. Basu, Z. Wu, J.L. Meyer, E. Larson, R. Kuo, A. Rollett, Entrapped Gas and Process Parameter-Induced Porosity Formation in Additively Manufactured 17-4 PH Stainless Steel, Journal of Materials Engineering and Performance, 56 (2021) 1-8.
[16]A. Erturk, D.J. Inman, Piezoelectric energy harvesting, John Wiley & Sons, 2011.
[17]J. Choi, I. Jung, C.-Y. Kang, A brief review of sound energy harvesting, Nano energy, 56 (2019) 169-183.
[18]N.M. Monroe, J.H. Lang, Broadband, large scale acoustic energy harvesting via synthesized electrical load: I. Harvester design and model, Smart Materials and Structures, 28(5) (2019) 55-67.
[19]M.A. Pillai, E. Deenadayalan, A review of acoustic energy harvesting, International journal of precision engineering and manufacturing, 15(5) (2014) 949-965.
[20]H. Maiwa, Thermal energy harvesting of PLZT and BaTiO3 ceramics using pyroelectric effects, in:  Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications, Elsevier, 2019, pp. 217-229.
[21]Q. Wang, C.R. Bowen, R. Lewis, J. Chen, W. Lei, H. Zhang, M.-Y. Li, S. Jiang, Hexagonal boron nitride nanosheets doped pyroelectric ceramic composite for high-performance thermal energy harvesting, Nano Energy, 60 (2019) 144-152.
[22]S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai, J. Xu, T. Yan, M. Wu, Z. Xu, H. Bao, High‐Performance Thermally Conductive Phase Change Composites by Large‐Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting, Advanced Materials, 31(49) (2019) 23-45.
[23]C. Williamson, R. Govardhan, A brief review of recent results in vortex-induced vibrations, Journal of Wind engineering and industrial Aerodynamics, 96(6-7) (2008) 713-735.
[24]M.J. Wickett, S. Hindley, M.B. Wickett, WITT: Harvesting Energy From Subsea, Vortex-Induced Vibration, Marine Technology Society Journal, 53(4) (2019) 17-25.
[25]M. Gu, B. Song, B. Zhang, Z. Mao, W. Tian, The effects of submergence depth on Vortex-Induced Vibration (VIV) and energy harvesting of a circular cylinder, Renewable Energy, 67 (2019) 67-78.
[26]L. Chen, S. Pan, Y. Fei, W. Zhang, F. Yang, Theoretical study of micro/nano-scale bistable plate for flexoelectric energy harvesting, Applied Physics A, 125(4) (2019) 242-253.
[27]H. Farokhi, A. Gholipour, M.H. Ghayesh, Efficient Broadband Vibration Energy Harvesting Using Multiple Piezoelectric Bimorphs, Journal of Applied Mechanics, 87(4) (2020) 45-56.
[28]A. Li, W. Zhao, S. Zhou, L. Wang, L. Zhang, Enhanced energy harvesting of cantilevered flexoelectric micro-beam by proof mass, AIP Advances, 9(11) (2019) 115305.
[29]Y. Zhang, S.C. Cai, L. Deng, Piezoelectric-based energy harvesting in bridge systems, Journal of intelligent material systems and structures, 25(12) (2014) 1414-1428.
[30]H. Dai, A. Abdelkefi, L. Wang, Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations, Nonlinear Dynamics, 77(3) (2014) 967-981.
[31]M. Radgolchin, H. Moeenfard, Size-dependent piezoelectric energy-harvesting analysis of micro/nano bridges subjected to random ambient excitations, Smart Materials and Structures, 27(2) (2018) 12-24.
[32]A. Li, W. Zhao, S. Zhou, L. Wang, L. Zhang, Enhanced energy harvesting of cantilevered flexoelectric micro-beam by proof mass, AIP Advances, 9 (2019) 23-41.
[33]M. Zamanian, H. Rezaei, M. Hadilu, S. Hosseini, A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeam, Smart Structures and Systems, 16(5) (2015) 891-918.
[34]A. Erturk, D.J. Inman, A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters, Journal of vibration and acoustics, 130(4) (2008) 12-24.
[35]L. Qi, Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters, Energy, 171 (2019) 721-730.
[36]Z. Zhou, Y. Ni, Z. Tong, S. Zhu, J. Sun, X. Xu, Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells, International Journal of Mechanical Sciences, 151 (2019) 537-550.
[37]P. Jiao, A.H. Alavi, Buckling analysis of graphene-reinforced mechanical metamaterial beams with periodic webbing patterns, International Journal of Engineering Science, 131 (2018) 1-18.
[38]M.L. Facchinetti, E. De Langre, F. Biolley, Coupling of structure and wake oscillators in vortex-induced vibrations, Journal of Fluids and structures, 19(2) (2004) 123-140.
[39]E. Ciappi, S. De Rosa, F. Franco, J.-L. Guyader, S.A. Hambric, Flinovia-Flow Induced Noise and Vibration Issues and Aspects, Springer, 2015.
[40]N. Shafiei, A. Mousavi, M. Ghadiri, On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams, International Journal of Engineering Science, 106 (2016) 42-56.
[41]R.D. Blevins, Flow-induced vibration 45 (1990) 34-50.
[42]H. Dai, L. Wang, Q. Qian, Q. Ni, Vortex-induced vibrations of pipes conveying fluid in the subcritical and supercritical regimes, Journal of Fluids and Structures, 39 (2013) 322-334.
[43]Y. Hu, B. Yang, X. Chen, X. Wang, J. Liu, Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration, Energy conversion and management, 162 (2018) 145-158.
[44]R. Song, X. Shan, F. Lv, T. Xie, A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension, Ceramics International, 41 (2015) S768-S773.
[45]A. Mehmood, A. Abdelkefi, M. Hajj, A. Nayfeh, I. Akhtar, A. Nuhait, Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder, Journal of Sound and Vibration, 332(19) (2013) 4656-4667.
[46]F. Cottone, L. Gammaitoni, H. Vocca, M. Ferrari, V. Ferrari, Piezoelectric buckled beams for random vibration energy harvesting, Smart materials and structures, 21(3) (2012) 34-54.
[47]A. Khatami, Response regime of nonlinear bistable energy harvester, Modares Mechanical Engineering, 18(5) (2018) 57-65.