[1] B.A. Steinfeldt, Grant, M. J., Matz, D. A. and Braun, R. D., Guidance, navigation, and control system performance trades for Mars pinpoint landing, Journal of Spacecraft and Rockets, 47(1) (2010) 188-198.
[2] T. Brand, Fuhrman, L., Geller, D., Hattis, P., Paschall, S. and Tao, Y. C, GN&C technology needed to achieve pinpoint landing accuracy at Mars, in: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Rhode Island, 2004.
[3] L. Shuang, Yuming, P., Yuping, L., Liu, Z. and Yufei, L., MCAV/IMU integrated navigation for the powered descent phase of Mars EDL, Advances in Space Research, 46(5) (2010) 557-570.
[4] L. Shuang, Jiang, X. and Yufei, L., Innovative Mars entry integrated navigation using modified multiple model adaptive estimation, Aerospace Science and Technology, 39 (2014) 403-413.
[5] B. D. Pollard, C. W. Chen, A radar terminal descent sensor for the mars science laboratory mission, in: IEEE Aerospace conference, Big Sky, MT, USA 2009.
[6] L. Shuang, Jiang, X. and Yufei, L., An innovative navigation scheme of powered descent phase for Mars pinpoint landing, Advances in Space Research, 54(9) (2014) 1888-1900.
[7] Y. Wu, H. Fu, Q. Xiao, Y. Zhang, Extension of robust three-stage Kalman filter for state estimation during Mars entry, IET Radar, Sonar & Navigation, 8(8) (2014) 598-609.
[8] J. L. Crassidis, J. L. Junkins, Sequential State Estimation, in: Optimal estimation of dynamic systems, Chapman and Hall/CRC, 2011, pp. 184-191.
[9] Q. Xiao, Y. Wu, H. Fu, Y. Zhang, Two-stage robust extended Kalman filter in autonomous navigation for the powered descent phase of Mars EDL, IET Signal Processing, 9(3) (2015) 277-287.
[10] L. Cheng, Z. Wang, Y. Song, F. Jiang, Real-time optimal control for irregular asteroid landings using deep neural networks, Acta Astronautica, 170 (2020) 66-79.
[11] B. Acikmese, S. R. Polen, Convex programming approach to powered descent guidance for mars landing, Journal of Guidance, Control, and Dynamics, 30(5) (2007) 1353-1366.
[12] B. Chengchao, G. Jifeng, Z. Hongxing, Minimum-Fuel Powered Descent Guidance for Mars Landing, in: 9th International Conference on Mechanical and Aerospace Engineering (ICMAE), 2018.
[13] U. Lee, M. Mesbahi, Constrained autonomous precision landing via dual quaternions and model predictive control, Journal of Guidance, Control, and Dynamics, 40(2) (2017) 292-308.
[14] T. Reynolds, M. Mesbahi, Small Body Precision Landing via Convex Model Predictive Control, in: AIAA SPACE and Astronautics Forum and Exposition, 2017.
[15] C. A. Pascucci, S. Bennani, A. Bemporad, Model predictive control for powered descent guidance and control, in: IEEE - European Control Conference (ECC), 2015.
[16] H. S. Ramirez, A variable structure control approach to the problem of soft landing on a planet, Control Theory Adv. Technology, 6(1) (1990) 53-73.
[17] J. Orr, Y. Shtessel, Lunar spacecraft powered descent control using higher-order sliding mode techniques, Journal of the Franklin Institute, 349(2) (2012) 476-492.
[18] Q. Lan, S. Li, J. Yang, L. Guo, Finite-time control for soft landing on an asteroid based on line-of-sight angle, Journal of the Franklin Institute, 351(1) (2014) 383-393.
[19] Y. Zhang, Y. Guo, G. Ma, G., B. Wie, Fixed-time pinpoint mars landing using two sliding-surface autonomous guidance, Acta Astronautica, 159 (2019) 547-563.
[20] J. Xu, X. Yu, J. Qiao, Hybrid Disturbance Observer-Based Anti-Disturbance Composite Control With Applications to Mars Landing Mission, IEEE Transactions on Systems, Man, and Cybernetics: Systems, (2019) 1-9.
[21] S. You, C. Wan, R. Dai, P. Lu, J. R. Rea, Learning-based Optimal Control for Planetary Entry, Powered Descent and Landing Guidance, in: AIAA Scitech 2020 Forum, 2020.
[22] S. Swaminathan, R. UP, D. Ghose, Real Time Powered Descent Guidance Algorithm for Mars Pinpoint Landing with Inequality Constraints, in: AIAA Scitech 2020 Forum, 2020.
[23] B. Gaudet, R. Linares, R. Furfaro, Integrated Guidance and Control for Pinpoint Mars Landing Using Reinforcement Learning, in: AAS/AIAA Astrodynamics Specialist Conference, 2018, pp. 1-20.
[24] A. Mehta, B. Bandyopadhyay, Frequency-shaped and observer-based discrete-time sliding mode control, Springer, 2015.
[25] J. E. Slotine, W. Li, Sliding Control, in: Applied nonlinear control, prentice hall Englewood Cliffs, NJ, 1991, pp. 276-307.
[26] S. Gadsden, smooth variable structure filter: theory and applications, Department of Mechanical Engineering, McMaster University, PhD dissertation, 2011.
[27] S. A. Gadsden, D. Dunne, S. R. Habibi, T. Kirubarajan, Comparison of extended and unscented Kalman, particle, and smooth variable structure filters on a bearing-only target tracking problem, in: Signal and Data Processing of Small Targets, San Diego, California, United States, 2009, pp. 74450B.
[28] S.A. Gadsden, M. Al-Shabi, I. Arasaratnam, S. R. Habibi, Combined cubature Kalman and smooth variable structure filtering: A robust nonlinear estimation strategy, Signal Processing, 96 (2014) 290-299.
[29] H. D. Curtis, Orbital mechanics for engineering students, Butterworth-Heinemann, 2013, pp. 10-16 and 656-660.
[30] B. Wie, Attitude Dynamics and Control, in: Space Vehicle Dynamics and Control, Second ed., AIAA, 2008, pp. 323-486.