اصلاح الگوریتم تخمین و کنترل ساختار متغیر برای فرود مقید مریخ‌نشین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی فضایی، دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف، تهران، ایران

2 مهندسی فضایی، دانشکده مهندسی هوافضا، دانشگاه صنعتی شریف، تهران، ایران

چکیده

فرود بر سیاره مریخ یکی از مسائل مهم و چالشی صنعت فضایی بوده که با عدم قطعیت‌های سیستمی و محیطی فراوانی مواجه است. لذا، دستیابی به مدل دقیقی از دینامیک مریخ‌نشین امکان‌پذیر نیست. در این راستا، پژوهش حاضر به طراحی الگوریتم یکپارچه تخمین و کنترل مرحله آخر فرود یعنی نشست پرداخته است به‌‌گونه‌ای که بتواند در برابر عدم قطعیت‌های موجود عملکرد قابل قبولی ارائه دهد. الگوریتم پیشنهادی برمبنای چارچوب کاری کنترل ساختارمتغیر شکل گرفته و نیاز به ژاکوبین‌گیری و ایجاد اندازه‌گیری‌های مصنوعی را به کمک جایگزینی خطی‌سازی تحلیلی با خطی‌سازی آماری و تئوری معکوس تعمیم‌یافته ماتریس برطرف نموده است. عملکرد الگوریتم پیشنهادی در حضور عدم قطعیت‌های مختلف ناشی از شرایط اولیه تصادفی دینامیک کوپل مریخ‌نشین، خطای مدلسازی نیرو‌ها و گشتاورهای وارده، تأخیر زمانی عملگرهای کنترلی و با لحاظ‌کردن قیود هندسی محل فرود و اشباع عملگرها بررسی شده است. در ادامه، عملکرد الگوریتم ناوبری مقاوم پیشنهادی با نتایج حاصل از ترکیب الگوریتم‌های متداول فیلتر کالمن توسعه‌یافته و کنترلر تناسبی-انتگرالی-مشتقی در مسئله غیرخطی فرود بر سیاره مریخ قیاس شده است. نتایج به‌دست آمده از شبیه‌سازی‌های مونت کارلو به وضوح عملکرد دقیق و مقاوم الگوی ناوبری و کنترل پیشنهادی را نشان داده و برتری آن نسبت به الگوریتم‌های متداول رایج را تأیید می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modified Variable Structure Estimation and Control for Constrained Landing on Mars

نویسندگان [English]

  • Maryam Kiani 1
  • Reza Ahmadvand 2
1 Aerospace engineering department, Sharif University of technology, Tehran, Iran
2 Aerospace Engineering department, Sharif University of Technology, Tehran, Iran
چکیده [English]

Landing on Mars is one of the paramount space missions undergoing various system and environmental uncertainties. Hence an exact model to represent the dynamic system cannot be achieved in advance, and subsequently, model-based navigation algorithms degrade. In this regard, the present paper has focused on a robust integrated estimation and control algorithm to attain accurate navigation in the presence of different uncertainties for the nonlinear problem of landing on Mars. The proposed algorithm has been developed based on the variable structure control framework. This method alleviates limitations of the existing algorithms including the requirement of the Jacobian calculation and the dimension equality for the state and measurement vectors via statistical linearization and the generalized matrix inverse theory, respectively. The performance of the proposed algorithm has been investigated via Monte Carlo simulations in the presence of different uncertainties including atmosphere instability and modeling errors, the time delay of actuators, the geometric constraint of the landing site as well as the saturation limitations of actuators. In addition, the obtained results have been compared to those of the well-known extended Kalman filter proportional–integral–derivative combination. This comparison proves the superiority of the proposed variable structure estimation and control algorithm in terms of accuracy and robustness.  

کلیدواژه‌ها [English]

  • Robust estimation
  • Robust control
  • Landing
  • Cubature Kalman filter
  • Variable structure filter
[1] B.A. Steinfeldt, Grant, M. J., Matz, D. A. and Braun, R. D., Guidance, navigation, and control system performance trades for Mars pinpoint landing, Journal of Spacecraft and Rockets, 47(1) (2010) 188-198.
[2] T. Brand, Fuhrman, L., Geller, D., Hattis, P., Paschall, S.  and Tao, Y. C, GN&C technology needed to achieve pinpoint landing accuracy at Mars, in:  AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Rhode Island, 2004.
[3] L. Shuang, Yuming, P., Yuping, L., Liu, Z. and Yufei, L., MCAV/IMU integrated navigation for the powered descent phase of Mars EDL, Advances in Space Research, 46(5) (2010) 557-570.
[4] L. Shuang, Jiang, X. and Yufei, L., Innovative Mars entry integrated navigation using modified multiple model adaptive estimation, Aerospace Science and Technology, 39 (2014) 403-413.
[5] B. D. Pollard, C. W. Chen, A radar terminal descent sensor for the mars science laboratory mission, in:  IEEE Aerospace conference, Big Sky, MT, USA 2009.
[6] L. Shuang, Jiang, X. and Yufei, L., An innovative navigation scheme of powered descent phase for Mars pinpoint landing, Advances in Space Research, 54(9) (2014) 1888-1900.
[7] Y. Wu, H. Fu, Q. Xiao, Y. Zhang, Extension of robust three-stage Kalman filter for state estimation during Mars entry, IET Radar, Sonar & Navigation, 8(8) (2014) 598-609.
[8] J. L. Crassidis, J. L. Junkins, Sequential State Estimation, in:  Optimal estimation of dynamic systems, Chapman and Hall/CRC, 2011, pp. 184-191.
[9] Q. Xiao, Y. Wu, H. Fu, Y. Zhang, Two-stage robust extended Kalman filter in autonomous navigation for the powered descent phase of Mars EDL, IET Signal Processing, 9(3) (2015) 277-287.
[10] L. Cheng, Z. Wang, Y. Song, F. Jiang, Real-time optimal control for irregular asteroid landings using deep neural networks, Acta Astronautica, 170 (2020) 66-79.
[11] B. Acikmese, S. R. Polen, Convex programming approach to powered descent guidance for mars landing, Journal of Guidance, Control, and Dynamics, 30(5) (2007) 1353-1366.
[12] B. Chengchao, G. Jifeng, Z. Hongxing, Minimum-Fuel Powered Descent Guidance for Mars Landing, in:  9th International Conference on Mechanical and Aerospace Engineering (ICMAE), 2018.
[13] U. Lee, M. Mesbahi, Constrained autonomous precision landing via dual quaternions and model predictive control, Journal of Guidance, Control, and Dynamics, 40(2) (2017) 292-308.
[14] T. Reynolds, M. Mesbahi, Small Body Precision Landing via Convex Model Predictive Control, in:  AIAA SPACE and Astronautics Forum and Exposition, 2017.
[15] C. A. Pascucci, S. Bennani, A. Bemporad, Model predictive control for powered descent guidance and control, in:  IEEE - European Control Conference (ECC), 2015.
[16] H. S. Ramirez, A variable structure control approach to the problem of soft landing on a planet, Control Theory Adv. Technology, 6(1) (1990) 53-73.
[17] J. Orr, Y. Shtessel, Lunar spacecraft powered descent control using higher-order sliding mode techniques, Journal of the Franklin Institute, 349(2) (2012) 476-492.
[18] Q. Lan, S. Li, J. Yang, L. Guo, Finite-time control for soft landing on an asteroid based on line-of-sight angle, Journal of the Franklin Institute, 351(1) (2014) 383-393.
[19] Y. Zhang, Y. Guo, G. Ma, G., B. Wie, Fixed-time pinpoint mars landing using two sliding-surface autonomous guidance, Acta Astronautica, 159 (2019) 547-563.
[20] J. Xu, X. Yu, J. Qiao, Hybrid Disturbance Observer-Based Anti-Disturbance Composite Control With Applications to Mars Landing Mission, IEEE Transactions on Systems, Man, and Cybernetics: Systems,  (2019) 1-9.
[21] S. You, C. Wan, R. Dai, P. Lu, J. R. Rea, Learning-based Optimal Control for Planetary Entry, Powered Descent and Landing Guidance, in:  AIAA Scitech 2020 Forum, 2020.
[22] S. Swaminathan, R. UP, D. Ghose, Real Time Powered Descent Guidance Algorithm for Mars Pinpoint Landing with Inequality Constraints, in: AIAA Scitech 2020 Forum, 2020.
[23] B. Gaudet, R. Linares, R. Furfaro, Integrated Guidance and Control for Pinpoint Mars Landing Using Reinforcement Learning, in:  AAS/AIAA Astrodynamics Specialist Conference, 2018, pp. 1-20.
[24] A. Mehta, B. Bandyopadhyay, Frequency-shaped and observer-based discrete-time sliding mode control, Springer, 2015.
[25] J. E. Slotine, W. Li, Sliding Control, in: Applied nonlinear control, prentice hall Englewood Cliffs, NJ, 1991, pp. 276-307.
[26] S. Gadsden, smooth variable structure filter: theory and applications, Department of Mechanical Engineering, McMaster University, PhD dissertation, 2011.
[27] S. A. Gadsden, D. Dunne, S. R. Habibi, T. Kirubarajan, Comparison of extended and unscented Kalman, particle, and smooth variable structure filters on a bearing-only target tracking problem, in:  Signal and Data Processing of Small Targets, San Diego, California, United States, 2009, pp. 74450B.
[28] S.A. Gadsden, M. Al-Shabi, I. Arasaratnam, S. R. Habibi, Combined cubature Kalman and smooth variable structure filtering: A robust nonlinear estimation strategy, Signal Processing, 96 (2014) 290-299.
[29] H. D. Curtis, Orbital mechanics for engineering students, Butterworth-Heinemann, 2013, pp. 10-16 and 656-660.
[30] B. Wie, Attitude Dynamics and Control, in:  Space Vehicle Dynamics and Control, Second ed., AIAA, 2008, pp. 323-486.