تحلیل برهمکنش سیال-سازه از تنش کششی در آکسون با استفاده از مدل‌سازی اجزای محدود در راستای بررسی آسیب‌های کرنشی اعصاب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو/دانشگاه تهران

2 دانشیار/ بخش مهندسی پزشکی، دانشکده علوم و فنون نوین دانشگاه تهران

چکیده

مطالعه رفتار آکسون تحت شرایط محیطی میتواند دید بهتری در توسعه روش‌های درمانی به‌منظور بهبود آسیبهای عصبی ایجاد کند. در این تحقیق، با مدل کردن زیر‌لایه به‌صورت هایپرالاستیک و اعمال فشارهای مختلف به زیر‌لایه میزان کرنشهای تحمل شده توسط آکسون محاسبه شد. کرنشها در سه بازه زمانی مختلف اعمال شد تا اثرات نرخ کرنشهای مختلف بررسی شود. برای آکسون یک مدل شامل میکروتوبول با خواص الاستیک خطی، نوروفیلامان و آکسلوما با خواص ویسکوالاستیک خطی فرض شد. جهت گسسته‌‌سازی زیرلایه و بخش‌های مختلف آکسون از روش المان محدود و نرم افزار کامسول استفاده شد. مشاهده شد که رژیم سیال موجود در کانال تأثیری بر پاسخ مکانیکی آکسون ندارد. با استفاده از تحلیل برهم کنش سیال-سازه، میزان کرنش ایجاد ‌شده نزدیک به صفر (در بیشترین حالت 0/0001) و تنش نیز ناچیز (در بیشترین مقدار 70N/m2) گزارش شد. نتایج نشان‌دهنده‌ اثر عمده میکروتوبول در قبول کردن بارهای مکانیکی و استحکام کلی آکسون می‌باشد. همچنین بیشترین کرنش‌ها در داخل آکسلوما دیده میشود که اهمیت پاسخ مکانیکی آن در ایجاد آسیب را متذکر میشود. باتوجه به پاسخ مرتبط با نرخ کرنش‌های مختلف مشاهده می‌شود که بیشترین احتمال آسیب به آکسون، در کرنش %42 و نرخ19/1s-1 می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fluid-Structure Interactions Analysis of Tension in An Axon Using Finite Elements Modeling to Investigate Strain Related Neurological Damages

نویسندگان [English]

  • Seyed Danial Ghasimi 1
  • Bahman Vahidi 2
  • Yasaman Amirii 1
1 MSc student/University of Tehran
2 Associate professor/University of Tehran
چکیده [English]

The study of axonal behavior under different environmental conditions can provide a better insight into the development of therapeutic approaches for healing after nerve damages. By modeling of sublayer in the form of a hyperelastic material and applying different pressures, the amount of strains tolerated by the axon was calculated. Strains were applied at three different time intervals to examine the effects of different strain rates. For axon, a model containing microtubules with linear elastic properties, neurofilament, and axolemma with linear viscoelastic properties was considered. The finite element method and COMSOL software were used for the discretization of the sublayer and the substructures of the axon. It was observed that the fluid regime in the channel did not affect the mechanical response of the axon. The strain was close to zero (at most 0.0001) and the stress was also negligible (at most, 70 N/m2). The results showed the major effect of microtubules on resisting mechanical forces and on the overall integrity of the axons. Most of the strains were seen inside the axolemma, indicating the importance of its mechanical response to injury. Regarding the response to the strain rate, the most probable damage to the axon, comparable with the former corresponding reports will occur at the strain of 42% and strain rate of 19.1 s-1, respectively.

کلیدواژه‌ها [English]

  • Traumatic brain injuries
  • Microfluidics
  • Finite element
  • Fluid-structure interaction
  • Viscoelastic model
[1] M.A. Hemphill, S. Dauth, C.J. Yu, B.E. Dabiri, K.K. Parker, Traumatic brain injury and the neuronal microenvironment: a potential role for neuropathological mechanotransduction, Neuron, 85(6) (2015) 1177-1192.
[2] A. Goriely, S. Budday, E. Kuhl, Neuromechanics: from neurons to brain, Advances in Applied Mechanics, 48 (2015) 79-139.
[3] D.C. Van Essen, A tension-based theory of morphogenesis and compact wiring in the central nervous system, Nature, 385(6614) (1997) 313-318.
[4] A. Holbourn, Mechanics of head injuries, The Lancet, 242(6267) (1943) 438-441.
[5] A. Jérusalem, M. Dao, Continuum modeling of a neuronal cell under blast loading, Acta biomaterialia, 8(9) (2012) 3360-3371.
[6] A. Montanino, S. Kleiven, Utilizing a structural mechanics approach to assess the primary effects of injury loads onto the axon and its components, Frontiers in neurology, 9 (2018) 643.
[7] C. Conde, A. Cáceres, Microtubule assembly, organization and dynamics in axons and dendrites, Nature Reviews Neuroscience, 10(5) (2009) 319-332.
[8] E. Bar-Kochba, M.T. Scimone, J.B. Estrada, C. Franck, Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury, Scientific Reports, 6(1) (2016) 1-11.
[9] F. Zhu, D.L. Gatti, K.H. Yang, Nodal versus total axonal strain and the role of cholesterol in traumatic brain injury, Journal of neurotrauma, 33(9) (2016) 859-870.
[10] S.P. Mutalik, J. Joseph, P.A. Pullarkat, A. Ghose, Cytoskeletal mechanisms of axonal contractility, Biophysical journal, 115(4) (2018) 713-724.
[11] J.-P. Dollé, B. Morrison III, R.S. Schloss, M.L. Yarmush, An organotypic uniaxial strain model using microfluidics, Lab on a Chip, 13(3) (2013) 432-442.
[12] S.D.a.B.V. Ghasimi, effect of strain on axonal injuries in microfluidic cell culture platform, in:  The 27th Annual International Conference of Iranian Society of Mechanical Engineers-ISME, Tehran, Iran, 2019.
[13] E. Stein, R. De Borst, T.J. Hughes, Encyclopedia of computational mechanics,  (2004).
[14] A. Comsol, Structural mechanics module user’s guide, COMSOL Multiphysics (TM) v, 5 (2012).
[15] R.D. Cook, Concepts and applications of finite element analysis, John wiley & sons, 2007.
[16] N. Abolfathi, A. Naik, M. Sotudeh, G. Karami, M. Ziejewski, Diffuse axonal injury and degradation in mechanical characteristics of brain white matter, in:  Summer Bioengineering Conference, American Society of Mechanical Engineers, 2008, pp. 229-230.
[17] D. Bray, M.B. Bunge, Serial analysis of microtubules in cultured rat sensory axons, Journal of neurocytology, 10(4) (1981) 589-605.
[18] T.D. Pollard, J.A. Cooper, Actin, a central player in cell shape and movement, science, 326(5957) (2009) 1208-1212.
[19] P.C. Wong, J. Marszalek, T.O. Crawford, Z. Xu, S.-T. Hsieh, J.W. Griffin, D.W. Cleveland, Increasing neurofilament subunit NF-M expression reduces axonal NF-H, inhibits radial growth, and results in neurofilamentous accumulation in motor neurons, The Journal of cell biology, 130(6) (1995) 1413-1422.
[20] C. Leterrier, P. Dubey, S. Roy, The nano-architecture of the axonal cytoskeleton, Nature Reviews Neuroscience, 18(12) (2017) 713-726.
[21] D.L. Logan, A first course in the finite element method, Cengage Learning, 2016.
[22] A. Datar, J. Ameeramja, A. Bhat, R. Srivastava, A. Mishra, R. Bernal, J. Prost, A. Callan-Jones, P.A. Pullarkat, The roles of microtubules and membrane tension in axonal beading, retraction, and atrophy, Biophysical journal, 117(5) (2019) 880-891.
[23] D.F. Meaney, Relationship between structural modeling and hyperelastic material behavior: application to CNS white matter, Biomechanics and modeling in mechanobiology, 1(4) (2003) 279-293.
[24] S. GhazaviKhorasgani, B. Vahidi, Mechanical effect on Neuron electrical signal, in:  2017 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME), IEEE, pp. 1-6.
[25] D. Kilinc, G. Gallo, K.A. Barbee, Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage, Experimental neurology, 212(2) (2008) 422-430.