انتشار امواج ترمومکانیکی در دیسک‌های حلقوی ساخته شده از مواد مدرج تابعی تحت شوک حرارتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

2 دانشکده فنی و مهندسی شرق گیلان، دانشگاه گیلان، رودسر-واجارگاه، ایران

چکیده

در این مقاله، به کمک تئوری کوپل ترموالاستیسیته تعمیم‌یافته لُرد-شولمن و با در نظر گرفتن اثرات غیرخطی حرارتی، رفتار ترموالاستیک دیسک‌های حلقوی ساخته شده از مواد مدرج تابعی تحت شوک حرارتی داخلی مورد بررسی قرار می‌گیرد. بدین منظور، ابتدا معادلات حاکم بر مسأله در چارچوب دستگاه مختصات قطبی استخراج می‌شوند. لازم به ذکر است که برای استخراج معادلات حاکم، معادله انرژی در فرم اصلی غیرخطی خود در نظر گرفته خواهد شد. سپس، فرایند حل عددی مسأله به کمک روش تربیع دیفرانسیلی تعمیم یافته ارائه خواهد شد. در بخش نتایج، اثرات پارامترهای مهمی نظیر اندیس ماده مدرج تابعی و بزرگی شوک حرارتی اعمالی بر انتشار موج ترمومکانیکی در دیسک مورد مطالعه قرار می‌گیرند. نتایج نشان می‌دهند که با افزایش اندیس ماده مدرج تابعی، بزرگی جابجایی و تنش‌ها در گذر زمان کاهش می‌یابند. همچنین، با ارائه نتایج برای مقادیر مختلف بزرگی شوک حرارتی معلوم گردید در مقادیر بالای شوک حرارتی انجام یک تحلیل غیرخطی حرارتی ضروری است. علاوه بر این آشکار شد که با کاهش زمان آسایش، نوسانات دما کاهش می‌یابد و با افزایش این پارامتر، دامنه تغییرات دما افزایش می‌یابد، در حالی‌که فرکانس نوسانات کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Propagation of Thermomechanical Waves in Annular Disks Made of Functionally Graded Materials under Thermal Shock

نویسندگان [English]

  • Mehran Roghani 1
  • Hessam Rouhi 2
1 Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
2 Department of Engineering Science, Faculty of Technology and Engineering, East of Guilan, University of Guilan, P.C. 44891-63157, Rudsar-Vajargah, Iran
چکیده [English]

In this paper, using the coupled Lord-Shulman generalized thermoelasticity theory and considering the nonlinear thermal effects, the thermoelastic behavior of annular disks made of functionally graded materials under internal thermal shock is investigated. To this end, the governing equations of the problem are first derived within the framework of the polar coordinates system. It should be noted that the energy equation is kept in its original nonlinear form in this derivation process. The solution procedure is then presented based on the generalized differential quadrature method. In the numerical results, the effects of important parameters such as functionally graded index and magnitude of applied thermal shock on the propagation of thermomechanical waves in the disks are studied. The results show that with increasing the functionally graded index, displacement and stress decrease as time evolves. Also, with presenting results for various magnitudes of thermal shock it is shown that conducting a nonlinear thermal analysis is necessary when the thermal shock magnitude is considerable. In addition, it is revealed that the fluctuations in the temperature are reduced as the relaxation time decreases. Moreover, increasing this parameter leads to temperature variations, whereas the frequency of the system decreases.

کلیدواژه‌ها [English]

  • Functionally graded material
  • Generalized differential quadrature method
  • Annular disk
  • Generalized thermoelasticity
  • Thermal shock
[1] Z.Y. Ai, Z.K. Ye, J.J. Yang, Thermo-mechanical behaviour of multi-layered media based on the Lord-Shulman model, Computers and Geotechnics, 129 (2021) 103897.
[2] M. Arefi, A. Abbasi, M. Vaziri Sereshk, Two-dimensional thermoelastic analysis of FG cylindrical shell resting on the Pasternak foundation subjected to mechanical and thermal loads based on FSDT formulation, Journal of Thermal Stresses, 39(5) (2016) 554-570.
[3] M. Shariyat, D. Asgari, M. Azadi, Transient thermoelastic behavior of thick cylinder made of functionally graded materials with temperature-dependent properties using the finite element method, AUT Journal of Mechanical Engineering, 42(1) (2019) 9-18. (in Persian).
[4] R.B. Hetnarski, J. Ignaczak, Generalized thermoelasticity, Journal of Thermal Stresses, 22(4-5) (1999) 451-476.
[5] R. Hetnarski, J. Ignaczak, Nonclassical dynamical thermoelasticity, International Journal of Solids and Structures, 37(1-2) (2000) 215-224.
[6] H.W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, 15(5) (1967) 299-309.
[7] A.E. Green, K.A. Lindsay, Thermoelasticity, Journal of Elasticity, 2(1) (1972) 1-7.
[8] A.E. Green, P.M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 432(1885) (1991) 171-194.
[9] A. Green, P. Naghdi, On undamped heat waves in an elastic solid, Journal of Thermal Stresses, 15(2) (1992) 253-264.
[10] P.K. Zeverdejani, Y. Kiani, Radially symmetric response of an FGM spherical pressure vessel under thermal shock using the thermally nonlinear Lord-Shulman model, International Journal of Pressure Vessels and Piping, 182 (2020) 104065.
[11] Y. Heydarpour, P. Malekzadeh, F. Gholipour, Thermoelastic analysis of FG-GPLRC spherical shells under thermo-mechanical loadings based on Lord-Shulman theory, Composites Part B: Engineering, 164 (2019) 400-424.
[12] Z.Y. Ai, Z.K. Ye, J.J. Yang, Thermo-mechanical behaviour of multi-layered media based on the Lord-Shulman model, Computers and Geotechnics, 129 (2021) 103897.
[13] M.F. Oskouie, R. Ansari, H. Rouhi, Studying nonlinear thermomechanical wave propagation in a viscoelastic layer based upon the Lord-Shulman theory, Mechanics of Advanced Materials and Structures, 27(10) (2020) 800-806.
[14] M. Faraji Oskouie, R. Ansari, H. Rouhi, Thermally nonlinear generalized coupled thermo-viscoelasticity of disks: a numerical variational approach, Waves in Random and Complex Media,  (2020) 1-16.
[15] A. Bagri, M. Eslami, Generalized coupled thermoelasticity of disks based on the Lord–Shulman model, Journal of thermal stresses, 27(8) (2004) 691-704.
[16] A. Bagri, M. Eslami, Generalized coupled thermoelasticity of functionally graded annular disk considering the Lord–Shulman theory, Composite Structures, 83(2) (2008) 168-179.
[17] Y. Kiani, M.R. Eslami, A GDQ approach to thermally nonlinear generalized thermoelasticity of disks, Journal of Thermal Stresses, 40(1) (2017) 121-133.
[18] A. Bahtui, M. Eslami, Coupled thermoelasticity of functionally graded cylindrical shells, Mechanics research communications, 34(1) (2007) 1-18.
[19] M. Shariyat, Nonlinear transient stress and wave propagation analyses of the FGM thick cylinders, employing a unified generalized thermoelasticity theory, International Journal of Mechanical Sciences, 65(1) (2012) 24-37.
[20] G. Rahimi, M. Arefi, M. Khoshgoftar, Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads, Applied Mathematics and Mechanics, 32(8) (2011) 997.
[21] M. Arefi, G. Rahimi, The effect of nonhomogeneity and end supports on the thermo elastic behavior of a clamped–clamped FG cylinder under mechanical and thermal loads, International Journal of Pressure Vessels and Piping, 96 (2012) 30-37.
[22] M. Arefi, A. Abbasi, M. Vaziri Sereshk, Two-dimensional thermoelastic analysis of FG cylindrical shell resting on the Pasternak foundation subjected to mechanical and thermal loads based on FSDT formulation, Journal of Thermal Stresses, 39(5) (2016) 554-570.
[23] A. Loghman, M. Nasr, M. Arefi, Nonsymmetric thermomechanical analysis of a functionally graded cylinder subjected to mechanical, thermal, and magnetic loads, Journal of Thermal Stresses, 40(6) (2017) 765-782.
[24] N. Noda, R.B. Hetnarski, Y. Tanigawa, Thermal stresses, Routledge, 2018.
[25] C. Shu, Application of differential quadrature method to structural and vibration analysis, in:  Differential Quadrature and Its Application in Engineering, Springer, 2000, pp. 186-223.
[26] J.C. Heinrich, D.W. Pepper, Intermediate finite element method: fluid flow and heat transfer applications, Routledge, 2017.
[27] J. Reddy, C. Chin, Thermomechanical analysis of functionally graded cylinders and plates, Journal of thermal Stresses, 21(6) (1998) 593-626.