[1] P. Avouris, C. Dimitrakopoulos, Graphene: synthesis and applications, Materials today, 15(3) (2012) 86-97.
[2] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nature nanotechnology, 4(4) (2009) 217-224.
[3] A. Tampieri, G. Celotti, S. Sprio, A. Delcogliano, S. Franzese, Porosity-graded hydroxyapatite ceramics to replace natural bone, Biomaterials, 22(11) (2001) 1365-1370.
[4] W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, K. Schulte, Functionally graded materials for biomedical applications, Materials Science and Engineering: A, 362(1-2) (2003) 40-60.
[5] R.M.R. Reddy, W. Karunasena, W. Lokuge, Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions, Aerospace Science and Technology, 78 (2018) 147-156.
[6] M. Arefi, E.M.-R. Bidgoli, R. Dimitri, F. Tornabene, Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets, Aerospace Science and Technology, 81 (2018) 108-117.
[7] J. Yang, D. Chen, S. Kitipornchai, Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method, Composite Structures, 193 (2018) 281-294.
[8] M. Heidari-Rarani, S. Alimirzaei, K. Torabi, Analytical solution for free vibration of functionally graded carbon nanotubes (FG-CNT) reinforced double-layered nano-plates resting on elastic medium, Journal of Science and Technology of Composites, 2(3) (2015) 55-66.
[9] K. Gao, W. Gao, D. Chen, J. Yang, Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation, Composite Structures, 204 (2018) 831-846.
[10] C. Feng, S. Kitipornchai, J. Yang, Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs), Composites Part B: Engineering, 110 (2017) 132-140.
[11] M. Javani, Y. Kiani, M. Eslami, Geometrically nonlinear free vibration of FG-GPLRC circular plate on the nonlinear elastic foundation, Composite Structures, 261 (2021) 113515.
[12] M. Javani, Y. Kiani, M. Eslami, Free vibration analysis of FG-GPLRC L-shaped plates implementing GDQE approach, Thin-Walled Structures, 162 (2021) 107600.
[13] L.P. Lefebvre, J. Banhart, D.C. Dunand, Porous metals and metallic foams: current status and recent developments, Advanced engineering materials, 10(9) (2008) 775-787.
[14] C. Betts, Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: a review, Materials Science and Technology, 28(2) (2012) 129-143.
[15] V.K. Chaudhari, A. Lal, Nonlinear free vibration analysis of elastically supported nanotube-reinforced composite beam in thermal environment, Procedia Engineering, 144 (2016) 928-935.
[16] A. Ugural, Stresses in plates and shells, McGraw-Hill, 1999.
[17] J.N. Reddy, Energy principles and variational methods in applied mechanics, John Wiley & Sons, 2017.
[18] C. Wang, T.M. Aung, Plastic buckling analysis of thick plates using p-Ritz method, International Journal of Solids and Structures, 44(18-19) (2007) 6239-6255.
[19] Y. Hou, G. Wei, Y. Xiang, DSC‐Ritz method for the free vibration analysis of Mindlin plates, International Journal for Numerical Methods in Engineering, 62(2) (2005) 262-288.
[20] S.T. Smith, M.A. Bradford, D.J. Oehlers, Numerical convergence of simple and orthogonal polynomials for the unilateral plate buckling problem using the Rayleigh–Ritz method, International Journal for Numerical Methods in Engineering, 44(11) (1999) 1685-1707.
[21] S.H. Hashemi, M. Karimi, H.R.D. Taher, Vibration analysis of rectangular Mindlin plates on elastic foundations and vertically in contact with stationary fluid by the Ritz method, Ocean Engineering, 37(2-3) (2010) 174-185.
[22] A. Leissa, Vibration of a simply-supported elliptical plate, Journal of Sound and Vibration, 6(1) (1967) 145-148.
[23] S. Çeribaşı, G. Altay, Free vibration of super elliptical plates with constant and variable thickness by Ritz method, Journal of Sound and Vibration, 319(1-2) (2009) 668-680.
[24] D. Gorman, Free vibration analysis of right triangular plates with combinations of clamped-simply supported boundary conditions, Journal of sound and vibration, 106(3) (1986) 419-431.