ارتعاشات آزاد ورق‌های نانوکامپوزیتی متخلخل مدرج تابعی تقویت شده با نانوتراشه‌های گرافنی با اشکال هندسی مختلف روی بستر الاستیک با روش تحلیلی پی‌ریتز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی مکانیک، دانشکده مکانیک، دانشگاه گیلان، رشت، ایران

2 مهندسی مکانیک، دانشکده فنی و مهندسی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

3 استاد، مهندسی مکانیک، دانشکده مکانیک، دانشگاه گیلان، رشت، ایران

چکیده

در این مطالعه، ارتعاشات آزاد ورق‌های نانوکامپوزیتی متخلخل مدرج تابعی تقویت شده با نانوتراشه‌های گرافنی در اشکال هندسی مستطیلی، مثلثی و بیضوی بر روی بستر الاستیک در شرایط مرزی مختلف مورد تحلیل و بررسی قرار می‌گیرد. از تئوری ورق مرتبه اول برشی برای مدلسازی ورق و از مدل پاسترناک برای مدلسازی بستر الاستیک استفاده می‌شود. سه نوع توزیع نانو‌تراشه گرافنی و سه نوع توزیع تخلخل در راستای ضخامت برای ورق نانوکامپوزیتی در نظر گرفته می‌شود. خواص مؤثر مادی نانوکامپوزیت با استفاده از یک مدل میکرومکانیکی بدست می‌آید. با نوشتن فانکشنال انرژی سیستم و بکارگیری روش تحلیلی پی‌ریتز، نتایج عددی برای بررسی اثرات ضریب تخلخل، درصد وزنی نانوتراشه‌های گرافنی، پارامترهای بستر الاستیک و همچنین نسبت طول به عرض و ضخامت ورق بر فرکانس طبیعی ارائه می‌شود. نشان داده می‌شود که ورق با الگوی توزیع تخلخل غیریکنواخت و متقارن نوع اول و چیدمان نوع اول نانوتراشه‌های گرافنی دارای بیشترین فرکانس طبیعی است. همچنین، با افزایش ضریب تخلخل، فرکانس طبیعی ورق برای تمامی الگو‌های توزیع نانوتراشه‌های گرافنی کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Free Vibrations of Embedded Functionally Graded Graphene Platelets Reinforced Porous Nanocomposite Plates with Various Shapes Using P-Ritz Method

نویسندگان [English]

  • Mohammad Ziyafat Doust Abed 1
  • Raheb Gholami 2
  • Reza Ansari 3
1 Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
2 Department of Mechanical Engineering, Lahijan Branch, Islamic Azad University, P.O. Box 1616, Lahijan, Iran
3 Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
چکیده [English]

In this study, the free vibrations of functionally graded graphene platelet-reinforced porous nanocomposite plates with various shapes such as rectangular, elliptical, and triangular ones embedded on an elastic foundation are analyzed. To mathematically model the considered plate and elastic foundation, the first-order shear deformation plate theory, and Pasternak model are used, respectively. Three types of graphene nanoplatelet distribution patterns and porous dispersion types through the thickness are considered for the nanocomposite plate. To obtain the effective material properties of the considered nanocomposite, a micromechanical model is employed. Then, the energy functional of considered functionally graded graphene platelet-reinforced porous nanocomposite plates are expressed, and the analytical P-Ritz method is used to solve the vibration problem corresponding to different shapes and boundary conditions, the influences of porosity coefficient, the weight fraction of graphene nanoplatelets, elastic foundation coefficients and also the lengths-to-width and -thickness ratios on the natural frequency are analyzed. It is illustrated that the plate with non-uniform and symmetric of first type porosity distribution pattern and the first type graphene nanoplatelets has a higher natural frequency. Also, by increasing the porosity coefficient, the natural frequency of the plate associated with all patterns of graphene nanoplatelets is reduced.

کلیدواژه‌ها [English]

  • free vibration
  • porous nanocomposite plates
  • Plates with various shapes
  • Elastic foundation
  • P-Ritz method
[1] P. Avouris, C. Dimitrakopoulos, Graphene: synthesis and applications, Materials today, 15(3) (2012) 86-97.
[2] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nature nanotechnology, 4(4) (2009) 217-224.
[3] A. Tampieri, G. Celotti, S. Sprio, A. Delcogliano, S. Franzese, Porosity-graded hydroxyapatite ceramics to replace natural bone, Biomaterials, 22(11) (2001) 1365-1370.
[4] W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, K. Schulte, Functionally graded materials for biomedical applications, Materials Science and Engineering: A, 362(1-2) (2003) 40-60.
[5] R.M.R. Reddy, W. Karunasena, W. Lokuge, Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions, Aerospace Science and Technology, 78 (2018) 147-156.
[6] M. Arefi, E.M.-R. Bidgoli, R. Dimitri, F. Tornabene, Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets, Aerospace Science and Technology, 81 (2018) 108-117.
[7] J. Yang, D. Chen, S. Kitipornchai, Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method, Composite Structures, 193 (2018) 281-294.
[8] M. Heidari-Rarani, S. Alimirzaei, K. Torabi, Analytical solution for free vibration of functionally graded carbon nanotubes (FG-CNT) reinforced double-layered nano-plates resting on elastic medium, Journal of Science and Technology of Composites, 2(3) (2015) 55-66.
[9] K. Gao, W. Gao, D. Chen, J. Yang, Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation, Composite Structures, 204 (2018) 831-846.
[10] C. Feng, S. Kitipornchai, J. Yang, Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs), Composites Part B: Engineering, 110 (2017) 132-140.
[11] M. Javani, Y. Kiani, M. Eslami, Geometrically nonlinear free vibration of FG-GPLRC circular plate on the nonlinear elastic foundation, Composite Structures, 261 (2021) 113515.
[12] M. Javani, Y. Kiani, M. Eslami, Free vibration analysis of FG-GPLRC L-shaped plates implementing GDQE approach, Thin-Walled Structures, 162 (2021) 107600.
[13] L.P. Lefebvre, J. Banhart, D.C. Dunand, Porous metals and metallic foams: current status and recent developments, Advanced engineering materials, 10(9) (2008) 775-787.
[14] C. Betts, Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: a review, Materials Science and Technology, 28(2) (2012) 129-143.
[15] V.K. Chaudhari, A. Lal, Nonlinear free vibration analysis of elastically supported nanotube-reinforced composite beam in thermal environment, Procedia Engineering, 144 (2016) 928-935.
[16] A. Ugural, Stresses in plates and shells, McGraw-Hill, 1999.
[17] J.N. Reddy, Energy principles and variational methods in applied mechanics, John Wiley & Sons, 2017.
[18] C. Wang, T.M. Aung, Plastic buckling analysis of thick plates using p-Ritz method, International Journal of Solids and Structures, 44(18-19) (2007) 6239-6255.
[19] Y. Hou, G. Wei, Y. Xiang, DSC‐Ritz method for the free vibration analysis of Mindlin plates, International Journal for Numerical Methods in Engineering, 62(2) (2005) 262-288.
[20] S.T. Smith, M.A. Bradford, D.J. Oehlers, Numerical convergence of simple and orthogonal polynomials for the unilateral plate buckling problem using the Rayleigh–Ritz method, International Journal for Numerical Methods in Engineering, 44(11) (1999) 1685-1707.
[21] S.H. Hashemi, M. Karimi, H.R.D. Taher, Vibration analysis of rectangular Mindlin plates on elastic foundations and vertically in contact with stationary fluid by the Ritz method, Ocean Engineering, 37(2-3) (2010) 174-185.
[22] A. Leissa, Vibration of a simply-supported elliptical plate, Journal of Sound and Vibration, 6(1) (1967) 145-148.
[23] S. Çeribaşı, G. Altay, Free vibration of super elliptical plates with constant and variable thickness by Ritz method, Journal of Sound and Vibration, 319(1-2) (2009) 668-680.
[24] D. Gorman, Free vibration analysis of right triangular plates with combinations of clamped-simply supported boundary conditions, Journal of sound and vibration, 106(3) (1986) 419-431.