الگوریتم جهت‌یابی صفحه‌ای میکروربات دو قطبی مغناطیسی توسط سه میدان مغناطیسی خارجی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

2 دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران.

چکیده

امروزه استفاده از میکروربات‌های مغناطیسی به دلیل حداقل تهاجمی بودن آن‌ها، در کاربردهای پزشکی بسیار مورد توجه قرار گرفته است. یکی از چالش‌های این میکروربات‌ها، کنترل خودکار آن‌ها در بدن موجود زنده جهت رسیدن به هدفی مشخص می‌باشد. با توجه به کوچک بودن اندازه میکروربات، موقعیت و جهت آن با استفاده از میدان مغناطیسی خارجی کنترل می‌شود که این میدان مغناطیسی به وسیله آهنربای دائم و یا آهنربای الکتریکی ایجاد می‌شود. یکی از مزیت‌های استفاده از آهنربای الکتریکی جهت ایجاد میدان مغناطیسی خارجی، امکان کنترل جهت و اندازه میدان مغناطیسی، توسط کنترل جریان الکتریکی است. در این مقاله میکروربات به صورت یک دو قطبی مغناطیسی نقطه‌ای در نظر گرفته شده است که با استفاده از قوانین ماکسول نیرو و گشتاور وارد بر دو قطبی برحسب جریان هر یک از آهنربای الکتریکی بدست آمده است. همچنین الگوریتمی، جهت مسیریابی ربات در محیطی با موانع نامشخص بدون محاسبه کردن مسیر از پیش تعیین شده، پیشنهاد شده است. علاوه بر این، صحت روابط بدست آمده و الگوریتم طراحی شده از طریق شبیه سازی حرکت ربات در نرم افزار متلب مورد بررسی قرار گرفته شده است که کارایی استفاده از سه آهنربای الکتریکی برای کنترل موقعیت میکروربات مغناطیسی در حرکت صفحه‌ای را تأیید می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Planar Navigation Algorithm of Magnetic Dipole Microrobot by Three External Electromagnets

نویسندگان [English]

  • Elmira Mojaver Zargar 1
  • Majid Sadedel 1
  • Mohammad Reza Karafi 2
1 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.
2 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

Recently, magnetic microrobots have attracted much attention in biomedical applications due to their minimally invasive features. One of the challenges in this field is about in-vivo autonomous control of microrobots to reach a predefined target. In concern to the submillimeter size of the microrobots, their position and orientation are controlled by an external magnetic field which is generated by permanent magnets or electromagnets. One of the advantages of using electromagnets to produce an external magnetic field is the ability to control the magnitude and orientation of the magnetic field by manipulating the electrical current of each electromagnet. In this study, by using Maxwell’s equations and considering the microrobot as a point dipole, the exerted force and torque relations are driven as a function of electromagnets’ electrical current. Moreover, a navigation algorithm is proposed to guide the robot through unknown obstacles without planning the whole path. Furthermore, the driven equations and designed algorithms are validated by simulating the microrobot’s motion using MATLAB software, which confirms the effectiveness of using three electromagnets to control an electromagnet microrobot’s planer motion.

کلیدواژه‌ها [English]

  • Microrobot
  • Magnetic actuation
  • Magnetic field
  • Navigation algorithm
[1] A.C. Bakenecker, A. von Gladiss, H. Schwenke, A. Behrends, T. Friedrich, K. Lüdtke-Buzug, A. Neumann, J. Barkhausen, F. Wegner, T.M. Buzug, Navigation of a magnetic micro-robot through a cerebral aneurysm phantom with magnetic particle imaging, Scientific Reports, 11 (2021) 14082.
[2] M. Nair, R. Guduru, P. Liang, J. Hong, V. Sagar, S. Khizroev, Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers, Nature Communications, 4 (2013) 1707.
[3] M. Hoop, F. Mushtaq, C. Hurter, X.-Z. Chen, B.J. Nelson, S. Pané, A smart multifunctional drug delivery nanoplatform for targeting cancer cells, Nanoscale, 8 (2016) 12723-12728.
[4] F. Qiu, L. Zhang, S. Tottori, K. Marquardt, K. Krawczyk, A. Franco-Obregón, B.J. Nelson, Bio-inspired microrobots, Materials Today, 15 (2012) 463.
[5] W. Wang, S. Li, L. Mair, S. Ahmed, T.J. Huang, T.E. Mallouk, Acoustic Propulsion of Nanorod Motors Inside Living Cells, Angewandte Chemie International Edition, 53 (2014) 3201-3204.
[6] M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, E. Diller, Biomedical Applications of Untethered Mobile Milli/Microrobots, Proceedings of the IEEE. Institute of Electrical and Electronics Engineers, 103 (2015) 205-224.
[7] X.-Z. Chen, M. Hoop, F. Mushtaq, E. Siringil, C. Hu, B.J. Nelson, S. Pané, Recent developments in magnetically driven micro- and nanorobots, Applied Materials Today, 9 (2017) 37-48.
[8] P. Fischer, B.J. Nelson, G.-Z. Yang, F. Peer, N.B. J., Y. Guang-Zhong, New materials for next-generation robots, Science Robotics, 3 (2018) eaau0448.
[9] Z. Yang, L. Yang, L. Zhang, Autonomous Navigation of Magnetic Microrobots in A Large Workspace Using Mobile-Coil System, IEEE/ASME Transactions on Mechatronics,  (2021) 1.
[10] S. Jeon, A.K. Hoshiar, K. Kim, S.S. Lee, E. Kim, S.S. Lee, J.-Y. Kim, B.J. Nelson, H.-J. Cha, B.-J. Yi, H. Choi, A Magnetically Controlled Soft Microrobot Steering a Guidewire in a Three-Dimensional Phantom Vascular Network, Soft Robotics, 6 (2018) 54-68.
[11] L. An, L. Huizeng, L. Zheng, Z. Zhipeng, L. Kaixuan, L. Mingzhu, S. Yanlin, Programmable droplet manipulation by a magnetic-actuated robot, Science Advances, 6 (2021) 5808.
[12] M.P. Kummer, J.J. Abbott, B.E. Kratochvil, R. Borer, A. Sengul, B.J. Nelson, Octomag: An electromagnetic system for 5-DOF wireless micromanipulation, IEEE Transactions on Robotics, 26 (2010) 1006-1017.
[13] H. Zhao, J. Leclerc, M. Feucht, O. Bailey, A.T. Becker, 3D Path-Following Using MRAC on a Millimeter-Scale Spiral-Type Magnetic Robot, IEEE Robotics and Automation Letters, 5 (2020) 1564-1571.
[14] J. Liu, T. Xu, S.X. Yang, X. Wu, Navigation and Visual Feedback Control for Magnetically Driven Helical Miniature Swimmers, IEEE Transactions on Industrial Informatics, 16 (2020) 477-487.
[15] Z.W. Tay, P. Chandrasekharan, B.D. Fellows, I.R. Arrizabalaga, E. Yu, M. Olivo, S.M. Conolly, Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer, Cancers 13 (2021).
[16] A.W. Mahoney, J.J. Abbott, Generating Rotating Magnetic Fields With a Single Permanent Magnet for Propulsion of Untethered Magnetic Devices in a Lumen, IEEE Transactions on Robotics, 30 (2014) 411-420.
[17] R. Pieters, H. Tung, S. Charreyron, D.F. Sargent, B.J. Nelson, RodBot: A rolling microrobot for micromanipulation, in:  2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 4042-4047.
[18] M. Egerstedt, Behavior Based Robotics Using Hybrid Automata BT  - Hybrid Systems: Computation and Control,  (2000) 103-116.
[19] F. Dehkordi, M. Sadedel, Dynamic modeling and decoupled control of linear and angular velocity for robotic fish, Iranian Journal of  Manufacturing Engineering, 8 (2021) 35-45.
[20] M. Khazaee, M. Sadedel, A. Davarpanah, Behavior-Based Navigation of an Autonomous Hexapod Robot Using a Hybrid Automaton, Journal of Intelligent & Robotic Systems, 102 (2021) 29.
[21] B. Saeedi, M. Sadedel, Implementation of Behavior-Based Navigation Algorithm on Four-Wheel Steering Mobile Robot, Journal of Computational Applied Mechanics, 52 (2021) 619-641.