بررسی عددی تأثیر شرایط عملیاتی مختلف بر عملکرد هواپیمای بدون سرنشین با سیستم پیشرانش پیل سوختی به‌کمک روش طراحی آزمایش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی هوافضا، دانشگاه امام علی، تهران، ایران

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در پژوهش حاضر به مطالعه تأثیر شرایط عملکردی مختلف بر راندمان یک پهپاد با پیشرانش پیل سوختی غشای پلیمری با استفاده از روش طراحی آزمایش پرداخته شده‌است. بدین منظور ضمن طراحی یک سیکل ترمودینامیکی بر مبنای مطالعات گذشته، استک پیل سوختی مفروض به‌صورت صفربعدی شبیه‌سازی و مدل عددی اعتبارسنجی شده‌است. در ادامه معادلات ترمودینامیکی حاکم برای کلیه اجزای سیکل نوشته شده و راندمان استک پیل سوختی و سیستم محاسبه گردیده‌است. به‌منظور بررسی تأثیر شرایط عملیاتی مختلف بر راندمان پیل سوختی و سیستم و بهینه‌سازی، روش رویه پاسخ و طرح مرکب مرکزی مورد استفاده قرار گرفته‌است. بدین منظور ارتفاع عملیاتی، فشار کاری و نرخ استوکیومتری کاتد به‌عنوان پارامترهای مستقل ورودی و راندمان استک پیل سوختی و کل سیکل ترمودینامیکی به‌عنوان پاسخ درنظر گرفته شده‌اند. نتایج این مطالعه نشان می‌دهد که افزایش فشار کاری سبب افزایش راندمان استک پیل سوختی و سیکل به ترتیب به میزان ٪3/5 و ٪14/5 می‌شود. از سوی دیگر هرچند افزایش استوکیومتری کاتد بهبود عملکرد پیل سوختی را درپی دارد، اما سبب کاهش شدید (حداکثر ٪30/6) راندمان سیکل می‌گردد. بررسی تأثیر ارتفاع عملیاتی بیانگر این نتیجه است که اثرات افزایش ارتفاع بر راندمان پیل سوختی قابل صرفنظر است، اما با افزایش ارتفاع عملیاتی راندمان سیکل بیش از ٪30 کاهش می‌یابد. بر مبنای نتایج این مطالعه در هر ارتفاع عملیاتی برای یک پهپاد، بیشترین راندمان زمانی حاصل می‌شود که فشار کاری در کران بالا و نرخ استوکیومتری کاتد در کران پایین قرار گیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical investigation of the influence of operating conditions on the performance of PEMFC powered Unmanned Aerial Vehicle (UAV): a statistical approach

نویسندگان [English]

  • amirhamzeh farajollahi 1
  • Mohsen Rostami 1
  • Mohammareza hasheminasab 2
  • Mojtaba Lak 1
  • Afshin Shojaian 1
1 Department of Engineering, Imam Ali University, Tehran, Iran
2 department of mechanical engieering Amirkabir university of technology
چکیده [English]

In this research, the effect of various operating conditions on the performance of an Unmanned Aerial Vehicle (UAV) with a PEMFC propulsion system is surveyed using a statistical approach, namely the Design of Experiment technique (DOE). Results indicate that increasing operating pressure improves the efficiency parameter for both the PEMFC and the system 3.5% and 14.5% respectively. Although increasing cathode stoichiometry augments the PEMFC efficiency, it plummets the system efficiency up to 30.6%. In addition, the influence of operating altitude on the PEMFC efficiency is negligible, while it causes a substantial decline in the system efficiency (more than 30%). As proved, at any desired operating altitude, maximum efficiency for the system obtains when the operating pressure and cathode stoichiometry are set at their maximum and minimum bound, respectively.

کلیدواژه‌ها [English]

  • PEM fuel cell (PEMFC)
  • Unmanned Aerial Vehicle (UAV)
  • Operating altitude
  • Design of Experiment (DOE)
  • Response Surface Method (RSM)
[1] M. Hasheminasab, M.J. Kermani, S.S. Nourazar, M.H. Khodsiani, A novel experimental based statistical study for water management in proton exchange membrane fuel cells, Applied energy, 264 (2020) 114713.
[2] A. Haxhiu, R. Chan, S. Kanerva, J. Kyyrä, A system level approach to estimate maximum load steps that can be applied on a fuel cell powered marine DC system, Energy Reports, 7 (2021) 888-895.
[3] H. Ye, G. Jin, W. Fei, N. Ghadimi, High step-up interleaved dc/dc converter with high efficiency, Energy sources, Part A: recovery, utilization, and environmental effects,  (2020) 1-20.
[4] C. Yang, S. Moon, Y. Kim, A fuel cell/battery hybrid power system for an unmanned aerial vehicle, Journal of Mechanical Science and Technology, 30 (2016) 2379-2385.
[5] F. Librán-Embid, F. Klaus, T. Tscharntke, I. Grass, Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes - A systematic review, Science of The Total Environment, 732 (2020) 139204.
[6] T. Lei, Z. Yang, Z. Lin, X. Zhang, State of art on energy management strategy for hybrid-powered unmanned aerial vehicle, Chinese Journal of Aeronautics, 32(6) (2019) 1488-1503.
[7] Ó. González-Espasandín, T.J. Leo, M.A. Raso, E. Navarro, Direct methanol fuel cell (DMFC) and H2 proton exchange membrane fuel (PEMFC/H2) cell performance under atmospheric flight conditions of Unmanned Aerial Vehicles, Renewable energy, 130 (2019) 762-773.
[8] Z. Ji, J. Qin, K. Cheng, C. Dang, S. Zhang, P. Dong, Thermodynamic performance evaluation of a turbine-less jet engine integrated with solid oxide fuel cells for unmanned aerial vehicles, Applied Thermal Engineering, 160 (2019) 114093.
[9] Z. Ji, J. Qin, K. Cheng, H. Liu, S. Zhang, P. Dong, Advanced exergy and graphical exergy analyses for solid oxide fuel cell turbine-less jet engines, Journal of Power Sources, 456 (2020) 227979.
[10] P. Aguiar, D.J.L. Brett, N.P. Brandon, Solid oxide fuel cell/gas turbine hybrid system analysis for high-altitude long-endurance unmanned aerial vehicles, International Journal of Hydrogen Energy, 33(23) (2008) 7214-7223.
[11] M. Rostami, M.D. Manshadi, A.H. Farajollahi, M. Marefati, Introducing and evaluation of a new propulsion system composed of solid oxide fuel cell and downstream cycles; usage in unmanned aerial vehicles, International Journal of Hydrogen Energy, 47(28) (2022) 13693-13709.
[12] M.H. Ahmadi, A. Mohammadi, F. Pourfayaz, M. Mehrpooya, M. Bidi, A. Valero, S. Uson, Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas, Journal of Natural Gas Science and Engineering, 34 (2016) 428-438.
[13] R.F. Mann, J.C. Amphlett, M.A. Hooper, H.M. Jensen, B.A. Peppley, P.R. Roberge, Development and application of a generalised steady-state electrochemical model for a PEM fuel cell, Journal of power sources, 86(1-2) (2000) 173-180.
[14] M. Miansari, K. Sedighi, M. Amidpour, E. Alizadeh, M. Miansari, Experimental and thermodynamic approach on proton exchange membrane fuel cell performance, Journal of Power Sources, 190(2) (2009) 356-361.
[15] J.C. Amphlett, R.F. Mann, B.A. Peppley, P.R. Roberge, A. Rodrigues, A model predicting transient responses of proton exchange membrane fuel cells, Journal of Power Sources, 61(1) (1996) 183-188.
[16] M. Mench, Performance characterization of fuel cell systems, Fuel Cell Engines,  (2008) 121-190.
[17] Y. Wang, C.-Y. Wang, Modeling polymer electrolyte fuel cells with large density and velocity changes, Journal of the Electrochemical Society, 152(2) (2005) A445.
[18] T.E. Springer, T. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model, Journal of the electrochemical society, 138(8) (1991) 2334.
[19] P. Pathapati, X. Xue, J. Tang, A new dynamic model for predicting transient phenomena in a PEM fuel cell system, Renewable energy, 30(1) (2005) 1-22.
[20] N. Donato, G. Neri, S.G. Leonardi, Z. Fusco, A. Tricoli, High Performance Flame-Made Ultraporous ZnO-Based QCM Sensor For Acetaldehyde, in:  2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2019, pp. 1-5.
[21] M. Rostami, M. Dehghan Manshadi, E. Afshari, Performance evaluation of two proton exchange membrane and alkaline fuel cells for use in UAVs by investigating the effect of operating altitude, International Journal of Energy Research, 46(2) (2022) 1481-1496.
[22] S. Toghyani, S.A. Atyabi, X. Gao, Enhancing the specific power of a pem fuel cell powered uav with a novel bean-shaped flow field, Energies, 14(9) (2021) 2494.
[23] F. Picard, D. Averous, X. Joulia, D. Barreteau, ProSEC: Modelling and Simulation in 3D of Brazed Aluminium Core-in-Drum Plate-Fin Heat Exchangers, in: R.M. de Brito Alves, C.A.O. do Nascimento, E.C. Biscaia (Eds.) Computer Aided Chemical Engineering, Elsevier, 2009, pp. 261-266.
[24] T.H. Oh, Conceptual design of small unmanned aerial vehicle with proton exchange membrane fuel cell system for long endurance mission, Energy Conversion and Management, 176 (2018) 349-356.
[25] M. Hasheminasab, M.J. Kermani, S.S. Nourazar, M. Khodsiani, Experimental Investigation of the Influence of Polymer Electrolyte Membrane Fuel Cells Operating Conditions on Its Performance and Water Management, Amirkabir Journal of Mechanical Engineering, 52(11) (2019) 3257-3274.
[26] Chapter 12 Response surface methods, in: R. Carlson, J.E. Carlson (Eds.) Data Handling in Science and Technology, Elsevier, 2005, pp. 243-319.
[27] E. Alizadeh, M. Khorshidian, S.H. Masrori Saadat, S.M. Rahgoshay, M. Rahimi-Esbo, Experimental study on a 1000W dead-end H2/O2 PEM fuel cell stack with cascade type for improving fuel utilization, Iranian Journal of Hydrogen & Fuel Cell, 3(3) (2017) 183-197.