شبیه‌سازی عددی پیل سوختی اکسید جامد تغذیه‌شده با زیست‌گاز و بررسی تاثیر شرایط عملکردی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

چکیده

استفاده از زیست‌گاز به‌جای هیدروژن در پیل سوختی می‌تواند به زنجیره تولید انرژی پاک کمک نماید. در تحقیق حاضر، تأثیر شرایط عملکردی بر عملکرد پیل سوختی اکسید جامد تغذیه شونده با بیوگاز بررسی می شود. به این منظور، به روش حجم محدود و به کمک نرم‌افزار فلوئنت به توسعه یک مدل عددی سه‌بعدی پرداخته‌شده است. همچنین از توابع تعریف‌شده توسط کاربر، برای تعریف واکنش‌های اصلاح بخار، و از روش بالادست مرتبه دوم و الگوریتم سیمپل برای گسسته سازی معادلات حاکم و کوپل سرعت-فشار استفاده شده است. نتایج نشان می‌دهد با افزایش نسبت بخار به کربن، میزان توان ابتدا افزایش و سپس کاهش می‌یابد. همچنین با افزایش غلظت متان در بیوگاز، نرخ واکنش‌های اصلاحی افزایش‌یافته و عملکرد پیل سوختی بهبود می‌یابد. در ولتاژ میانی 0/5 ولت و دمای عملکردی 1073 کلوین، با افزایش درصد متان در بیوگاز از 45% به 65%، توان به میزان 15% افزایش می‌یابد. همچنین با افزایش دمای عملکردی، به دلیل افزایش نرخ واکنش‌های اصلاحی و الکتروشیمیایی و بهبود هدایت یونی، عملکرد پیل سوختی بهبود می‌یابد. در ولتاژ میانی 0/5 ولت و به ازای بیوگاز با 65% متان، با افزایش دما از 1073 به 1273 کلوین، توان به میزان 132% افزایش می‌یابد. نتایج نشان می‌دهد که میزان بهینه نسبت بخار به کربن با افزایش دما کاهش‌ و با افزایش غلظت متان در سوخت افزایش می‌یابد و در محدوده 0/3 تا 1/2 قرار می‌گیرد.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Simulation of a Biogas-fueled Solid Oxide Fuel Cell and the Investigation of the Influence of Operating Conditions

نویسندگان [English]

  • Morteza Mehrabian
  • Javad Mahmoudimehr
Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
چکیده [English]

Using biogas, rather than pure hydrogen, in a solid oxide fuel cell (SOFC) can help the green energy production chain. This research investigates the influence of operating conditions on the performance of a biogas-fueled SOFC. In this regard, a 3D numerical model is developed using a finite volume approach and Fluent software. User Defined Functions are employed to introduce the steam reforming processes inside the SOFC. The second-order upwind scheme and SIMPLE algorithm are used for the discretization of governing equations and the pressure-velocity coupling. The results indicate that the power density first increases and then decreases by increasing the steam-to-fuel (S/C) ratio. Increasing the biogas methane content causes the performance of the SOFC to improve by enhancing the rates of reforming reactions. At a voltage of 0.5V and an operating temperature of 1073K, increasing the biogas methane percentage from 45% to 65%, causes the power to increase by 15%. Also, increasing the operating temperature enhances the SOFC performance by increasing the rates of reforming and electrochemical reactions and the electrolyte ionic conductivity. At a voltage of 0.5V, for a biogas methane percentage of 65%, increasing the operating temperature from 1073K to 1273K leads to a 132% growth of power. It is also found that the optimal S/C ratio decreases with temperature and increases with biogas methane content and lies within the range of 0.3-1.2.

کلیدواژه‌ها [English]

  • Solid oxide fuel cell
  • biogas fuel
  • influence of operating conditions
  • internal steam reforming
  • numerical simulation
[1] J. Xuan, M.K. Leung, D.Y. Leung, M. Ni, A review of biomass-derived fuel processors for fuel cell systems, Renewable and Sustainable Energy Reviews, 13(6-7) (2009) 1301-1313.
[2] A.B. Stambouli, E. Traversa, Fuel cells, an alternative to standard sources of energy, Renewable and sustainable energy reviews, 6(3) (2002) 295-304.
[3] S.C. Singhal, K. Kendall, High-temperature solid oxide fuel cells: fundamentals, design and applications, Elsevier, 2003.
[4] M. Ni, D.Y. Leung, M.K. Leung, Modeling of methane fed solid oxide fuel cells: comparison between proton conducting electrolyte and oxygen ion conducting electrolyte, Journal of Power Sources, 183(1) (2008) 133-142.
[5] Q. Ma, R. Peng, Y. Lin, J. Gao, G. Meng, A high-performance ammonia-fueled solid oxide fuel cell, Journal of power sources, 161(1) (2006) 95-98.
[6] X. Lv, C. Gu, X. Liu, Y. Weng, Effect of gasified biomass fuel on load characteristics of an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system, International Journal of Hydrogen Energy, 41(22) (2016) 9563-9576.
[7] C.O. Colpan, I. Dincer, F. Hamdullahpur, Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas, International Journal of Hydrogen Energy, 32(7) (2007) 787-795.
[8] T. Zhao, Micro fuel cells: principles and applications, Academic Press, 2009.
[9] Y. Shiratori, T. Oshima, K. Sasaki, Feasibility of direct-biogas SOFC, International Journal of Hydrogen Energy, 33(21) (2008) 6316-6321.
[10] V. Eveloy, W. Karunkeyoon, P. Rodgers, A. Al Alili, Energy, exergy and economic analysis of an integrated solid oxide fuel cell–gas turbine–organic Rankine power generation system, International journal of hydrogen energy, 41(31) (2016) 13843-13858.
[11] M. Ni, D.Y. Leung, M.K. Leung, Mathematical modeling of ammonia-fed solid oxide fuel cells with different electrolytes, International Journal of Hydrogen Energy, 33(20) (2008) 5765-5772.
[12] M. Liu, R. Peng, D. Dong, J. Gao, X. Liu, G. Meng, Direct liquid methanol-fueled solid oxide fuel cell, Journal of Power Sources, 185(1) (2008) 188-192.
[13] n. Kousheshi, M. Yari, A. Saberi Mehr, Investigation of Performance and Emission Characteristic of a Reactivity Controlled Compression Ignition Engine Fueled By a Mixture of Diesel and Syngas Derived From Biomass Gasification, Amirkabir Journal of Mechanical Engineering, 53(1) (2021) 17-30.
[14] H. Timmermann, W. Sawady, R. Reimert, E. Ivers-Tiffée, Kinetics of (reversible) internal reforming of methane in solid oxide fuel cells under stationary and APU conditions, Journal of Power Sources, 195(1) (2010) 214-222.
[15] N. Laosiripojana, S. Assabumrungrat, Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC, Journal of Power Sources, 163(2) (2007) 943-951.
[16] C. Guerra, A. Lanzini, P. Leone, M. Santarelli, D. Beretta, Experimental study of dry reforming of biogas in a tubular anode-supported solid oxide fuel cell, International Journal of Hydrogen Energy, 38(25) (2013) 10559-10566.
[17] A. Galvagno, V. Chiodo, F. Urbani, F. Freni, Biogas as hydrogen source for fuel cell applications, International Journal of Hydrogen Energy, 38(10) (2013) 3913-3920.
[18] A. Lanzini, P. Leone, Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells, International Journal of Hydrogen Energy, 35(6) (2010) 2463-2476.
[19] Y. Wang, F. Yoshiba, M. Kawase, T. Watanabe, Performance and effective kinetic models of methane steam reforming over Ni/YSZ anode of planar SOFC, International Journal of Hydrogen Energy, 34(9) (2009) 3885-3893.
[20] J.R. Rostrup-Nielsen, J. Sehested, J. Noerskov, Hydrogen and Synthesis Gas by Steam and CO2 Reforming, Cheminform, 34 (2003).
[21] J. Ashok, S. Das, N. Dewangan, S. Kawi, Steam reforming of surrogate diesel model over hydrotalcite-derived MO-CaO-Al2O3 (M= Ni & Co) catalysts for SOFC applications, Fuel, 291 (2021) 120194.
[22] T. Nguyen, M. Sakamoto, T. Uchida, D. Doan, M. Dang, P. Tu, K. Sasaki, Y. Shiratori, Development of paper-structured catalyst for application to direct internal reforming solid oxide fuel cell fueled by biogas, International Journal of Hydrogen Energy, 44(21) (2019) 10484-10497.
[23] J. Kihlman, J. Sucipto, N. Kaisalo, P. Simell, J. Lehtonen, Carbon formation in catalytic steam reforming of natural gas with SOFC anode off-gas, International Journal of Hydrogen Energy, 40(3) (2015) 1548-1558.
[24] N. Laosiripojana, W. Sangtongkitcharoen, S. Assabumrungrat, Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature: Improvement of resistance toward carbon formation by the redox property of doping CeO2, Fuel, 85(3) (2006) 323-332.
[25] E. Vakouftsi, G. Marnellos, C. Athanasiou, F. Coutelieris, CFD modeling of a biogas fuelled SOFC, Solid State Ionics, 192(1) (2011) 458-463.
[26] E. Vakouftsi, G. Marnellos, C. Athanasiou, F. Coutelieris, A detailed model for transport processes in a methane fed planar SOFC, Chemical Engineering Research and Design, 89(2) (2011) 224-229.
[27] M. Borji, S. Ghorbani, K. Atashkari, A. Etemadi, Numerical Investigation of Integrated Biomass Gasification and Planar Solid Oxide Fuel Cell, Amirkabir Journal of Mechanical Engineering, 49(1) (2017) 219-230.
[28] S. Saleh Mirhasani, S. Jafarmadar, S. Khalilarya, A. Chitsaz, Exergoeconomic Analysis of a Solid Oxide Fuel Cell Based Trigeneration System with External Reformer and Dimethyl Ether, Amirkabir Journal of Mechanical Engineering, 52(6) (2019) 1463-1478.
[29] K. Chouhan, S. Sinha, S. Kumar, S. Kumar, Utilization of biogas from different substrates for SOFC feed via steam reforming: Thermodynamic and exergy analyses, Journal of Environmental Chemical Engineering, 7(2) (2019) 103018.
[30] P. Piroonlerkgul, S. Assabumrungrat, N. Laosiripojana, A. Adesina, Selection of appropriate fuel processor for biogas-fuelled SOFC system, Chemical Engineering Journal, 140(1-3) (2008) 341-351.
[31] N. Chatrattanawet, D. Saebea, S. Authayanun, A. Arpornwichanop, Y. Patcharavorachot, Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches, Energy, 146 (2018) 131-140.
[32] T. Nishino, J.S. Szmyd, Numerical analysis of a cell-based indirect internal reforming tubular SOFC operating with biogas, Journal of Fuel Cell Science and Technology, 7(5) (2010).
[33] Y. Wang, L. Wehrle, A. Banerjee, Y. Shi, O. Deutschmann, Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modeling, Renewable energy, 163 (2021) 78-87.
[34] V. Chiodo, A. Galvagno, A. Lanzini, D. Papurello, F. Urbani, M. Santarelli, S. Freni, Biogas reforming process investigation for SOFC application, Energy Conversion and Management, 98 (2015) 252-258.
[35] B. Tjaden, M. Gandiglio, A. Lanzini, M. Santarelli, M. Jarvinen, Small-scale biogas-SOFC plant: technical analysis and assessment of different fuel reforming options, Energy & fuels, 28(6) (2014) 4216-4232.
[36] K.-W. Lin, H.-W. Wu, Hydrogen-rich syngas production and carbon dioxide formation using aqueous urea solution in biogas steam reforming by thermodynamic analysis, International Journal of Hydrogen Energy, 45(20) (2020) 11593-11604.
[37] O. Razbani, M. Assadi, M. Andersson, Three dimensional CFD modeling and experimental validation of an electrolyte supported solid oxide fuel cell fed with methane-free biogas, International Journal of Hydrogen Energy, 38(24) (2013) 10068-10080.
[38] D. Saebea, A. Arpornwichanop, Y. Patcharavorachot, Thermodynamic analysis of a proton conducting SOFC integrated system fuelled by different renewable fuels, International Journal of Hydrogen Energy, 46(20) (2021) 11445-11457.
[39] Z. Qu, P. Aravind, S. Boksteen, N. Dekker, A. Janssen, N. Woudstra, A. Verkooijen, Three-dimensional computational fluid dynamics modeling of anode-supported planar SOFC, International Journal of Hydrogen Energy, 36(16) (2011) 10209-10220.
[40] Z. Zhang, D. Yue, C. He, S. Ye, W. Wang, J. Yuan, Three-dimensional CFD modeling of transport phenomena in anode-supported planar SOFCs, Heat and Mass Transfer, 50(11) (2014) 1575-1586.
[41] H. Hesami, M. Borji, J. Rezapour, Three-Dimensional Numerical Study of Solid Oxide Fuel Cell Performance with Converging Diverging Flow Field, Amirkabir Journal of Mechanical Engineering, 54(3) (2022) 589-614.
[42] M. Ni, Electrolytic effect in solid oxide fuel cells running on steam/methane mixture, Journal of Power Sources, 196(4) (2011) 2027-2036.
[43] M. Ni, Modeling of SOFC running on partially pre-reformed gas mixture, International Journal of Hydrogen Energy, 37(2) (2012) 1731-1745.
[44] B. Haberman, J. Young, Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell, International Journal of Heat and Mass Transfer, 47(17-18) (2004) 3617-3629.
[45] M. Ni, Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming, Energy Conversion and Management, 70 (2013) 116-129.
[46] M.W. Chase, N.I.S. Organization, NIST-JANAF thermochemical tables, American Chemical Society Washington, DC, 1998.
[47] H. Bouwmeester, P.J. Gellings, The CRC handbook of solid state electrochemistry, 1997.
[48] M.H. Akbari, B. Rismanchi, Numerical investigation of flow field configuration and contact resistance for PEM fuel cell performance, Renewable Energy, 33(8) (2008) 1775-1783.
[49] S. Nagata, A. Momma, T. Kato, Y. Kasuga, Numerical analysis of output characteristics of tubular SOFC with internal reformer, Journal of Power Sources, 101(1) (2001) 60-71.
[50] Q. Wang, L. Li, C. Wang, Numerical study of thermoelectric characteristics of a planar solid oxide fuel cell with direct internal reforming of methane, Journal of Power Sources, 186(2) (2009) 399-407.
[51] Z. Zhang, D. Yue, G. Yang, J. Chen, Y. Zheng, H. Miao, W. Wang, J. Yuan, N. Huang, Three-dimensional CFD modeling of transport phenomena in multi-channel anode-supported planar SOFCs, International Journal of Heat and Mass Transfer, 84 (2015) 942-954.
[52] M. Hussain, X. Li, I. Dincer, Mathematical modeling of planar solid oxide fuel cells, Journal of Power Sources, 161(2) (2006) 1012-1022.
[53] M.E. Chelmehsara, J. Mahmoudimehr, Techno-economic comparison of anode-supported, cathode-supported, and electrolyte-supported SOFCs, International journal of hydrogen energy, 43(32) (2018) 15521-15530.
[54] S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publ, Corp., New York, 58 (1980) 288.
[55] J. Ramírez-Minguela, V. Rangel-Hernández, J. Alfaro-Ayala, A. Uribe-Ramírez, J. Mendoza-Miranda, J. Belman-Flores, B. Ruiz-Camacho, Energy and entropy study of a SOFC using biogas from different sources considering internal reforming of methane, International Journal of Heat and Mass Transfer, 120 (2018) 1044-1054.
[56] Y. Yang, G. Wang, H. Zhang, W. Xia, Comparison of heat and mass transfer between planar and MOLB-type SOFCs, Journal of Power Sources, 177(2) (2008) 426-433.
[57] M. Jahn, M. Heddrich, A. Weder, E. Reichelt, R. Lange, Oxidative Dry‐Reforming of Biogas: Reactor Design and SOFC System Integration, Energy Technology, 1(1) (2013) 48-58.
[58] M. Balat, H. Balat, Biogas as a renewable energy source—a review, Energy Sources, Part A, 31(14) (2009) 1280-1293.
[59] M.F. Serincan, U. Pasaogullari, N.M. Sammes, Effects of operating conditions on the performance of a micro-tubular solid oxide fuel cell (SOFC), Journal of Power Sources, 192(2) (2009) 414-422.
[60] L.A. Chick, O.A. Marina, C.A. Coyle, E.C. Thomsen, Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene, Journal of power sources, 236 (2013) 341-349.
[61] H. Djamel, A. Hafsia, Z. Bariza, B.M. Hocine, O. Kafia, Thermal field in SOFC fed by hydrogen: Inlet gases temperature effect, International journal of hydrogen energy, 38(20) (2013) 8575-8583.
[62] S.A. Saadabadi, A.T. Thattai, L. Fan, R.E. Lindeboom, H. Spanjers, P. Aravind, Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints, Renewable Energy, 134 (2019) 194-214.
[63] S. Araki, N. Hino, T. Mori, S. Hikazudani, Autothermal reforming of biogas over a monolithic catalyst, Journal of Natural Gas Chemistry, 19(5) (2010) 477-481.
[64] Z. Jaworski, B. Zakrzewska, P. Pianko-Oprych, On thermodynamic equilibrium of carbon deposition from gaseous CHO mixtures: updating for nanotubes, Reviews in Chemical Engineering, 33(3) (2017) 217-235.