[1] X. Li, Q. Gao, Y. Cao, Y. Yang, S. Liu, Z.L. Wang, T. Cheng, Optimization strategy of wind energy harvesting via triboelectric-electromagnetic flexible cooperation, Applied Energy, 307 (2022) 118311.
[2] M. Li, A. Luo, W. Luo, F. Wang, Recent progress on mechanical optimization of mems electret-based electrostatic vibration energy harvesters, Journal of Microelectromechanical Systems, 31(5) (2022) 726-740.
[3] U. Latif, E. Uddin, M. Younis, A. Abdelkefi, Wake flow effects on the energy harvesting characteristics of piezoelectric tandem flags, in: AIP Conference Proceedings, AIP Publishing, 2022.
[4] A. Esmaeili, J. Sousa, Flow-driven piezoelectric energy harvester on a full-span wing for micro-aerial-vehicle (MAV) application, Arabian Journal for Science and Engineering, 45 (2020) 5713-5728.
[5] M. Salari, H. Afrasiab, M.H. Pashaei, R. Akbari Alashti, Finite Element Modeling of Fluid-Solid-Piezoelectric for Investigating the Ways of Improving the Performance of the Micro Energy Harvester in the Fluid Flow, Amirkabir Journal of Mechanical Engineering, 54(1) (2022) 31-54. (in Persian)
[6] A. Abdelkefi, Aeroelastic energy harvesting: A review, International Journal of Engineering Science, 100 (2016) 112-135.
[7] M. Zhang, Y. Song, A. Abdelkefi, H. Yu, J. Wang, Vortex-induced vibration of a circular cylinder with nonlinear stiffness: prediction using forced vibration data, Nonlinear Dynamics, 108(3) (2022) 1867-1884.
[8] X. Zhang, M. Hu, J. Cai, A. Babenko, E. Shiju, Z. Xu, Numerical Simulation of Vortex-Induced Transverse Vibration of a Cylinder with Very Low Mass Ratio, Shock and Vibration, 2022 (2022).
[9] Z. Li, S. Zhou, Z. Yang, Recent progress on flutter‐based wind energy harvesting, International Journal of Mechanical System Dynamics, 2(1) (2022) 82-98.
[10] C. Xu, L. Zhao, Investigation on the characteristics of a novel internal resonance galloping oscillator for concurrent aeroelastic and base vibratory energy harvesting, Mechanical Systems and Signal Processing, 173 (2022) 109022.
[11] J. Allen, A. Smits, Energy harvesting eel, Journal of fluids and structures, 15(3-4) (2001) 629-640.
[12] G.W. Taylor, J.R. Burns, S. Kammann, W.B. Powers, T.R. Welsh, The energy harvesting eel: a small subsurface ocean/river power generator, IEEE journal of oceanic engineering, 26(4) (2001) 539-547.
[13] H.D. Akaydin, N. Elvin, Y. Andreopoulos, Energy harvesting from highly unsteady fluid flows using piezoelectric materials, Journal of Intelligent Material Systems and Structures, 21(13) (2010) 1263-1278.
[14] J.F. Derakhshandeh, Fluid structural interaction of a flexible plate submerged in the wake of a circular cylinder, Ocean Engineering, 266 (2022) 112933.
[15] Y. Amini, H. Emdad, M. Farid, An accurate model for numerical prediction of piezoelectric energy harvesting from fluid structure interaction problems, Smart materials and structures, 23(9) (2014) 095034.
[16] H. Wang, Q. Zhai, J. Zhang, Numerical study of flow-induced vibration of a flexible plate behind a circular cylinder, Ocean Engineering, 163 (2018) 419-430.
[17] H. Zhu, G. Li, J. Wang, Flow-induced vibration of a circular cylinder with splitter plates placed upstream and downstream individually and simultaneously, Applied Ocean Research, 97 (2020) 102084.
[18] C. Mittal, A. Sharma, Flow-induced coupled vibrations of an elastically mounted cylinder and a detached flexible plate, Journal of Fluid Mechanics, 942 (2022) A57.
[19] Y. Wu, F.-S. Lien, E. Yee, G. Chen, Numerical investigation of flow-induced vibration for cylinder-plate assembly at low Reynolds number, Fluids, 8(4) (2023) 118.
[20] M. Jebelli, M. Masdari, Interaction of two parallel free oscillating flat plates and VIV of an upstream circular cylinder in laminar flow, Ocean Engineering, 259 (2022) 111876.
[21] E. Barati, M.R. Zarkak, M. Biabani, Investigating the effect of the flow direction on heat transfer and energy harvesting from induced vibration in a heated semi-circular cylinder, Ocean Engineering, 279 (2023) 114487.
[22] S. Mazharmanesh, J. Young, F.-B. Tian, J.C. Lai, Energy harvesting of two inverted piezoelectric flags in tandem, side-by-side and staggered arrangements, International Journal of Heat and Fluid Flow, 83 (2020) 108589.
[23] S. Mazharmanesh, J. Young, F.-B. Tian, S. Ravi, J.C. Lai, Coupling performance of two tandem and side-by-side inverted piezoelectric flags in an oscillating flow, Journal of Fluids and Structures, 119 (2023) 103874.
[24] A. Erturk, D.J. Inman, A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters, Journal of Vibration and Acoustics, 130(4) (2008).
[25] A. Erturk, D.J. Inman, On mechanical modeling of cantilevered piezoelectric vibration energy harvesters, Journal of intelligent material systems and structures, 19(11) (2008) 1311-1325.
[26] D.C. Wilcox, Turbulence modeling for CFD, DCW industries La Canada, CA, 1998.
[27] M. Kobayashi, J. Pereira, J. Sousa, Comparison of several open boundary numerical treatments for laminar recirculating flows, International Journal for Numerical Methods in Fluids, 16(5) (1993) 403-419.
[28] K.-H. Mohr, Messungen instationärer Drücke bei Queranströmung von Kreiszylindern unter Berücksichtigung fluidelastischer Effekte, Publikationen vor 2000, 1981.
[29] G. West, C. Apelt, Measurements of fluctuating pressures and forces on a circular cylinder in the reynolds number range 104 to 2· 5× 105, Journal of fluids and structures, 7(3) (1993) 227-244.
[30] S. Szepessy, P. Bearman, Analysis of a pressure averaging device for measuring aerodynamic forces on a circular cylinder, Experiments in fluids, 16(2) (1993) 120-128.
[31] C. Norberg, Fluctuating lift on a circular cylinder: review and new measurements, Journal of Fluids and Structures, 17(1) (2003) 57-96.
[32] A. Roshko, On the drag and shedding frequency of two-dimensional bluff bodies, 1954.
[33] K. Kwon, H. Choi, Control of laminar vortex shedding behind a circular cylinder using splitter plates, Physics of Fluids, 8(2) (1996) 479-486.
[34] S. Shukla, R. Govardhan, J. Arakeri, Flow over a cylinder with a hinged-splitter plate, Journal of Fluids and Structures, 25(4) (2009) 713-720.
[35] A. Erturk, D.J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations, Smart materials and structures, 18(2) (2009) 025009.
[36] S. Kundu, H.B. Nemade, Modeling and simulation of a piezoelectric vibration energy harvester, Procedia Engineering, 144 (2016) 568-575.