بررسی عددی گشتاور راه‌اندازی توربین باد محور عمودی داریوس با پره جی-شکل

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

پژوهش کنونی با بهره‌گیری از شبیه‌سازی سه بعدی جریان حول توربین داریوس سه پره‌ای به بررسی توان راه‌اندازی توربین می‌پردازد. دو نوع توربین پره‌ مستقیم و پره ‌مارپیچ مجهز به پره‌هایی با پروفیل جی-شکل مورد بررسی قرار گرفته‌اند. تاثیر کمیت‌های گوناگون نظیر سرعت باد، ارتفاع پره‌ها و باز یا بسته بودن انتهای پره جی-شکل مورد مطالعه قرار گرفته و با توربین مجهز به پره‌های کامل مقایسه شده است. تحلیل جریان حول پره آشکار ساخت که گردابه‌های شکل گرفته در سطح فشار پره جی-شکل موجب افزایش گشتاور تولیدی می‌شوند. با بستن انتهای پره جی-شکل از خروج این گردابه‌ها در لبه‌های انتهایی جلوگیری می‌شود که تاثیر مثبت قایل ملاحظه‌ای در شرایط راه‌اندازی و شرایطی که روتور دارای چرخش است ، دارد. متوسط گشتاور تولیدی برای توربین پره مستقیم و پره مارپیچ مجهز به پره جی-شکل با انتهای بسته به ترتیب تحت شرایط راه‌اندازی 38/5 و 21 درصد و در نسبت سرعت نوک پره کم 49/5 و41/9 درصد نسبت به توربین با پره کامل افزایش داشته است. اثر مثبت استفاده از پره‌های جی-شکل تحت شرایط راه‌‌اندازی برای سرعت‌های کم باد و ارتفاع‌های بلندتر پره بارزتر می‌باشد که این پره را به گزینه مناسبی برای به کارگیری توربین در مناطق شهری بدل می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical study of self-starting torque in Darius ‎vertical axis wind turbines with J-type blades

نویسندگان [English]

  • Ramin Farzadi
  • Majid Bazargan
Ph.D. Candidate, Mechanical Department, K. N. Toosi University of Technology, Tehran Iran
چکیده [English]

The current study has used a three-dimensional simulation of flow around the three-bladed Darrieus turbine to investigate the turbine's self-starting power. Two types of straight and helical-bladed turbines, which are equipped with J-type blades are considered. The effects of various parameters including wind speed, blade height, and the tip shape of J-type blades which could be open or closed have been studied and compared with those of the turbine with conventional blade form. The flow analysis around the J-type blades determined that the vortices formed on the pressure raise the torque production. By closing the ends of the J-type blade, these vortices are prevented from exiting at the ends that leads to a substantial improvement in the self-starting and low tip speed ratios. The average torque produced by the straight and helical-bladed turbines equipped with closed-end J-type blades is respectively 38.5% and 21% higher than the turbines with full profile blades under self-start-up conditions, and the aforementioned percentages are 49% and 41.9% at low tip speed ratios. The positive effect of using J-type blades under self-starting conditions is more pronounced at low wind speeds and higher blade heights, which makes these blades a viable option for urban applications.

کلیدواژه‌ها [English]

  • Darrieus turbine
  • J-type blade
  • Self-starting power
  • Straight bladed turbine
  • Helical bladed ‎‎turbine
[1] D.Y.C. Leung, Y. Yang, Wind energy development and its environmental impact: A review,  Renewable and Sustainable Energy Reviews, 16(1) (2012).
[2] H.Y. Peng, B.W. Zhong, G. Hu, H.J. Liu, Optimization analysis of straight-bladed vertical axis wind turbines in turbulent environments by wind tunnel testing, Energy Conversion and Management, 257 (2022) 115411.
[3] A. Rezaeiha, H. Montazeri, B. Blocken, Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters, Energy Conversion and Management, 169 (2018).
[4] W. Tjiu, T. Marnoto, S. Mat, M.H. Ruslan, K. Sopian, Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations, Renewable Energy, 75 (2015).
[5] M. Ghasemian, Z.N. Ashrafi, A. Sedaghat, A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines, Energy Conversion and Management, 149 (2017).
[6] R. Howell, N. Qin, J. Edwards, N. Durrani, Wind tunnel and numerical study of a small vertical axis wind turbine, Renewable Energy, 35(2) (2010).
[7] A. Tummala, R.K. Velamati, D.K. Sinha, V. Indraja, V.H. Krishna, A review on small scale wind turbines, Renewable and Sustainable Energy Reviews, 56 (2016) 1351-1371.
[8] Z. Zhao, D. Wang, T. Wang, W. Shen, H. Liu, M. Chen, A review: Approaches for aerodynamic performance improvement of lift-type vertical axis wind turbine, Sustainable Energy Technologies and Assessments, 49 (2022) 101789.
[9] H. Riegler, R. Ag, HAWT versus VAWT: Small VAWTs find a clear niche, Refocus, 4(4) (2003).
[10] A. Shires, Design optimisation of an offshore vertical axis wind turbine, Proceedings of Institution of Civil Engineers: Energy, 166(1) (2013).
[11] S. Zanforlin, S. Deluca, Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines, Energy, 148 (2018).
[12] Q.a. Li, T. Maeda, Y. Kamada, J. Murata, M. Yamamoto, T. Ogasawara, K. Shimizu, T. Kogaki, Study on power performance for straight-bladed vertical axis wind turbine by field and wind tunnel test, Renewable Energy, 90 (2016).
[13] Z. Driss, O. Mlayeh, S. Driss, M. Maaloul, M.S. Abid, Study of the incidence angle effect on the aerodynamic structure characteristics of an incurved Savonius wind rotor placed in a wind tunnel, Energy, 113 (2016).
[14] T. Wakui, Y. Tanzawa, T. Hashizume, T. Nagao, Hybrid configuration of darrieus and savonius rotors for stand-alone wind turbine-generator systems, Electrical Engineering in Japan, 150(4) (2005).
[15] R. Gupta, A. Biswas, K.K. Sharma, Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius-three-bladed Darrieus rotor, Renewable Energy, 33(9) (2008).
[16] B.K. Debnath, A. Biswas, R. Gupta, Computational fluid dynamics analysis of a combined three-bucket Savonius and three-bladed Darrieus rotor at various overlap conditions, Journal of Renewable and Sustainable Energy, 1(3) (2009).
[17] D. MacPhee, A. Beyene, Recent advances in rotor design of vertical axis wind turbines, Wind Engineering, 36(6) (2012).
[18] S. Bhuyan, A. Biswas, Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors, Energy Conversion and Management, 87 (2014).
[19] N. Akbari, a. abdolahifar, Performance Investigation of Hybrid Darrieus-Savonius Wind Turbine Compared to Straight-Bladed Darrieus Turbine by Three-Dimensional Numerical Simulation, Amirkabir Journal of Mechanical Engineering, 51(6) (2020) 1443-1454. (in persian)
[20] A. Roshan, M.J. Maghrebi, Performance improvement of hybrid Darrieus-Savonius wind turbine, Journal of Solid and Fluid Mechanics, 6(3) (2016) 195-212. (in persian)
[21] A. Abdolahifar, S.M.H. Karimian, Aerodynamic Performance Improvement of Hybrid Darrieus-Savonius Vertical Axis Wind Turbine, Amirkabir Journal of Mechanical Engineering, 52(7) (2019) 1865-1884. (in persian)
[22] M.R. Castelli, E. Benini, Effect of blade inclination angle on a darrieus wind turbine, Journal of Turbomachinery, 134(3) (2011).
[23] S.M.H. Karimian, A. Abdolahifar, Performance investigation of a new Darrieus Vertical Axis Wind Turbine, Energy, 191 (2020).
[24] V. Shukla, A.K. Kaviti, Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models, Energy, 126 (2017).
[25] D. Neuhart, O. Pendergraft, A water tunnel study of Gurney flaps (NASA TM 4071), Washing-ton, DC: NASA Langley Research Center, (1988).
[26] J. Qian, Z. Zhang, S. Luo, F. Liu, Numerical study of the aerodynamic characteristics of a plunging rigid airfoil with elastic trailing-edge plate, AIAA 2011-3062. 20th AIAA Computational Fluid Dynamics Conference, Hawaii (June 2011).
[27] Z. Wang, M. Zhuang, Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios, Applied Energy, 208 (2017).
[28] S. Beyhaghi, R.S. Amano, A parametric study on leading-edge slots used on wind turbine airfoils at various angles of attack, Journal of Wind Engineering and Industrial Aerodynamics, 175 (2018).
[29] O. Mohamed, A. Ibrahim, A. Etman, A. Abdelkader, A. Elbaz, Numerical Investigation of Darrieus Wind Turbine with Slotted Airfoil Blades, Energy Conversion and Management, 5 (2020) 100026.
[30] A. Abdolahifar, S. Karimian, A comprehensive three-dimensional study on Darrieus vertical axis wind turbine with slotted blade to reduce flow separation, Energy, 248 (2022) 123632.
[31] M. Zamani, M.J. Maghrebi, S.R. Varedi, Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation, Renewable Energy, 95 (2016) 109-126.
[32] M. Zamani, S. Nazari, S.A. Moshizi, M.J. Maghrebi, Three dimensional simulation of J-shaped Darrieus vertical axis wind turbine, Energy, 116 (2016).
[33] L. Pan, Z. Zhu, H. Xiao, L. Wang, Numerical Analysis and Parameter Optimization of J-Shaped Blade on Offshore Vertical Axis Wind Turbine, Energies, 14(19) (2021).
[34] A. García Auyanet, R.E. Santoso, H. Mohan, S.S. Rathore, D. Chakraborty, P.G. Verdin, CFD-Based J-Shaped Blade Design Improvement for Vertical Axis Wind Turbines, Sustainability, 14(22) (2022).
[35] R. Farzadi, M. Bazargan, 3D numerical simulation of the Darrieus vertical axis wind turbine with J-type and straight blades under various operating conditions including self-starting mode, Energy,  278 (2023) 128040.
[36] Y. Celik, D. Ingham, L. Ma, M. Pourkashanian, Design and aerodynamic performance analyses of the self-starting H-type VAWT having J-shaped aerofoils considering various design parameters using CFD, Energy, 251 (2022) 123881.
[37] Y. Celik, D. Ingham, L. Ma, M. Pourkashanian, Novel hybrid blade design and its impact on the overall and self-starting performance of a three-dimensional H-type Darrieus wind turbine, Journal of Fluids and Structures, 119 (2023) 103876.
[38] K. McLaren, S. Tullis, S. Ziada, Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine, Wind Energy, 15(3) (2012).
[39] M. Elkhoury, T. Kiwata, E. Aoun, Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch, Journal of Wind Engineering and Industrial Aerodynamics, 139 (2015).