معرفی ضخامت بحرانی یک لایه متخلخل بر حسب نسبت تخلخل و اثر آن بر نرخ انتقال حرارت

نوع مقاله : مقاله پژوهشی

نویسنده

دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

بررسی اثرات لایه متخلخل در یک محفظه بر انتقال حرارت جابجائی و دستیابی به مقدار بهینه انتقال انرژی در عایق‌های حرارتی از جمله مباحث پژوهشی به‌روز در انتقال حرارت است و طرح جامعی نیز در ادبیات مساله وجود ندارد. با توجه به اینکه در یک محفظه بسته با دیواره‌های قائم دماثابت، انتقال حرارت با وجود لایه‌های متخلخل عمودی بیشتر از لایه افقی می‌باشد، در این مقاله به بررسی اثر ضخامت لایه متخلخل عمودی بر انتقال حرارت جابجایی آزاد در یک محفظه جهت طراحی بهینه عایق‌های حرارتی به روش شبکه بولتزمن پرداخته شده است. بر همین اساس، پس از بررسی اجمالی اثر موقعیت لایه متخلخل عمودی بر مقادیر عدد ناسلت متوسط، به بررسی اثر تغییر ضخامت لایه متخلخل پرداخته می‌شود. در ابتدا، با تغییر موقعیت لایه متخلخل عمودی در محفظه مشاهده گردید که میزان حرارت منتقل شده در حالتی که لایه متخلخل در وسط محفظه قرار می‌گیرد بیشتر از سایر حالات می‌باشد. در ادامه با بررسی اثر ضخامت لایه متخلخل در این موقعیت نشان داده شد که در مقادیر مشخصی از عدد رایلی و دارسی عدد ناسلت روند کاهشی از خود نشان می‌دهد که این روند بر اساس عدد رایلی اصلاح شده قابل تفسیر است. همچنین، ضخامت بحرانی لایه متخلخل، (S/L)Crit. در مقادیر متوسط اعداد رایلی اصلاح شده برای اولین بار گزارش شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Critical Thickness of a Porous Layer with Respect to Porosity and Its Effect on Heat Transfer Rate

نویسنده [English]

  • M. Nazari
Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Investigation of the thermal effects of a porous layer in an enclosure has not been studied completely in the literature and this challenge is generally considered to be an open research topic that may require more study. As the heat transfer rate in a vertical porous layer is higher than a horizontal layer, in this paper the effect of thickness of the vertical porous layer on natural convection in an enclosure is completely investigated using the lattice Boltzmann method. Therefore, after studying the effect of position of a porous layer on the Nusselt number, the effects of thickness of the porous medium on heat transfer rate are investigated. The obtained results show that a considerable amount of convective heat rate is transferred using the middle-vertical porous layer; and by increasing the thickness of the layer, the values of Nusselt number decrease which can be described by definition of the modified Rayleigh number. In addition, the critical thickness of the porous layer inside the cavity, (S/L)Crit. are reported in the moderate Rayleigh numbers for the first time.

کلیدواژه‌ها [English]

  • heat transfer
  • Porous Layer
  • Critical Thickness
  • Insulation
  • Lattice Boltzmann method
[1] Cheng, P., “Heat Transfer in Geothermal Systems”,Advances in Heat Transfer. 14, 1-105, 1978.
[2] Nield, D.A. and A. Bejan, “Convection in Porous Media”,3rd ed. Springer, New York, 2006.
[3] Rajamani, R., C. Srinivas, P. Nithiarasu and K. N.Seetharamu, “Natural Convection in Axisymmetric Porous Bodies”, International Journal of Numerical Methods for Heat & Fluid Flow 5 (1995): 829-837.
[4] Poulikakos, D. and A. Bejan, “The Departure From Darcy Flow in Natural Convection in a Vertical Porous Layer”, Physics of Fluids 28 (1985): 3477-3484.
[5] Durlofsky, L. and J. F. Brady, “Analysis of The Brinkman Equation as a Model for Flow in Porous Media”, Physics of Fluids 30 (1987): 3329-3341.
[6] Chan, B. K. C., C. M. Ivey and J. M. Barry, “Natural Convection in Enclosed Porous Media with Rectangular Boundaries”, Journal of Heat transfer-T ASME 92(1970): 21-27.
[7] Vasseur, P., C. H. Wang and M. Sen, “Natural Convection in an Inclined Rectangular Porous Slot: the Brinkman-Extended Darcy Model”, Journal of Heat transfer-TASME 112 (1990): 507-511.
[8] Tong, T. W. and E. Subramanian, “A Boundary-Layer Analysis for Natural Convection in Vertical Porous Enclosures: use of the Brinkman-Extended Darcy Model”, Journal of Heat transfer-T ASME 28 (1985):563-571.
[9] Nithiarasu, P., K. N. Seetharamu and T. Sundararajan,“Natural Convective Heat Transfer in a Fluid Saturated Variable Porosity Medium.”, International Journal of Heat and Mass Transfer 40 (1997): 3955-3967.
[10] Bekermann, C., S. Ramadhyani, R. Vishkanta,“Natural Convective Flow and Heat Transfer Between a Fluid Layer and a Porous Layer inside a Rectangular Enclosure’’, Journal of Heat transfer-T ASME 109(1987): 363-370.
[11] Chen, X. B., P. Yu, Y. Sui, S. H. Winoto and H. T. Low,“Natural Convection in a Cavity Filled with Porous Layers on the Top and Bottom Walls‘’, Transport in Porous Media 78 (2009): 259–276.
[12] Tong, T. W. and E. Subramanian, “Natural Convection in Rectangular Enclosures Partially Filled with a Porous Medium.”, International journal of heat and fluid flow 7(1986): 3–10.
[13] Nishimura, T., T. Takumi, M. Shiraishi, Y. Kawamura and H. Ozoe, “Numerical Analysis of Natural Convection in a Rectangular Enclosure Horizontally Divided into Fluid and Porous Regions”, International Journal of Heat and Mass Transfer 29 (1986): 889–898.
[14] Du, Z. G. and E. Bilgen, “Natural Convection in Vertical Cavities with Partially Filled Heat-generating Porous Media.”, Numerical Heat Transfer A-Appl. 18(1990): 371–386.
[15] Nakayama, A., R. Jones, D. Naylor and P.H. Oosthuizen, “Free Convection in a Horizontal Enclosure Partly Filled With a Porous Medium”, Journal of thermophysics and heat transfer, (1995): 797–800.
[16] Beckermann, C., R. Viskanta and S. Ramadhyani,“Natural Convection in Vertical Enclosures Containing Simultaneously Fluid and Porous Layers”, Journal of Fluid Mechanics 186 (1988): 257-284.
[17] Chen, S. and G. D. Doolen, “Lattice Boltzmann Method for Fluid Flows”, Annual review of fluid mechanics 30 (1998): 329-364.
[18] Succi, S., “The lattice Boltzmann equation for fluid dynamics and beyond”, Oxford University Press, New York, 2001.
[19] Sukop, M. C. and D. T. Thorne, “Lattice Boltzmann Modeling”, Springer, New York, 2006.
[20] Alexander, F. J., H. Chen, S. Chen and G. D. Doolen, “Lattice Boltzmann Model for Compressible Fluids”,Physical Review A, 46 (1992): 1967-1970.
[21] Dixit, H.N. and V. Babu, “Simulation of High Rayleigh Number Natural Convection in a Square Cavity Using the Lattice Boltzmann Method’’, International Journal of Heat and Mass Transfer, 49 (2006): 727-739.
[22] Guo, Z. and T. S. Zhao, “Lattice Boltzmann Model for Incompressible Flows Through Porous Media’’, Physical Review E, 66 (2002): 036304.
[23] Guo, Z. and T. S. Zhao, “A Lattice Boltzmann Model for Convection Heat Transfer in Porous Media’’, Numerical Heat Transfer B-Fund., 47 (2005): 157-177.
[24] Rong, F. M., Z. L. Guo, JH Lu and B.C. Shi, “Numerical Simulation of The Flow Around a Porous Covering Square Cylinder in a Channel via Lattice Boltzmann Method’’, International Journal for Numerical Methods in Fluids, 65 (2011): 1217-1230.
[25] Vishnampet, R., A. Narasimhan and V. Babu, “High Rayleigh Number Natural Convection Inside 2D Porous Enclosures Using the Lattice Boltzmann Method’’,Journal of Heat Transfer, 133 (2011): 062501-1.
[26] Nazari, M., M. H. Kayhani and A. Anaraki Haji Bagheri,“Comparison of heat transfer in a cavity between vertical and horizontal porous layers using LBM’’, Modares Mechanical Engineering, 13.8 (2012): 93-107.
[27] Ergun, S., “Fluid Flow Through Packed Column’’,Chemical engineering progress, 48 (1952): 89-94.
[28] Vafai, K., ‘’Convective Flow and Heat Transfer in Variable-Porosity Media’’, Journal of Fluid Mechanics,147 (1984): 233-259.
[29] Mohamad, A.A., ‘’Lattice Boltzmann Method:Fundamentals and Engineering Applications with Computers Codes’’, Springer, New York, 2011.
[30] De Vahl Davis, G., “Natural Convection of Air in a Square Cavity: a Benchmark Numerical Solution’’,International Journal for numerical methods in fluids, 3(1983): 249-264.
[31] Ochoa-Tapia, J.A. and S. Whitaker, “Momentum Jump Condition at the Boundary between a Porous Medium and a Homogeneous Fluid Inertial Effect”, Journal of Porous Media, 1 (1998): 201–217.