[1] N.H. Duc, D.T.H. Giang, Magnetic sensors based on piezoelectric–magnetostrictive composites, Journal of Alloys and Compounds, 449(1) (2008) 214-218.
[2] A. Bayrashev, W.P. Robbins, B. Ziaie, Low frequency wireless powering of microsystems using piezoelectric–magnetostrictive laminate composites, Sensors and Actuators A: Physical, 114(2) (2004) 244-249.
[3] M. Vopsaroiu, J. Blackburn, M.G. Cain, A new magnetic recording read head technology based on the magneto-electric effect, Journal of Physics D: Applied Physics, 40(17) (2007) 5027.
[4] J. Van Den Boomgaard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller, An in situ grown eutectic magnetoelectric composite material, Journal of Materials Science, 9(10) (1974) 1705-1709.
[5] K. Lam, W. Qian, Free vibration of symmetric angle-ply thick laminated composite cylindrical shells, Composites Part B: Engineering, 31(4) (2000) 345-354.
[6] Ö. Civalek, An efficient method for free vibration analysis of rotating truncated conical shells, International Journal of Pressure Vessels and Piping, 83(1) (2006) 1-12.
[7] P. Malekzadeh, Y. Heydarpour, Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment, Composite Structures, 94(9) (2012) 2971-2981.
[8] Y. Heydarpour, M.M. Aghdam, P. Malekzadeh, Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells, Composite Structures, 117 (2014) 187-200.
[9] S. Dey, S. Sarkar, A. Das, A. Karmakar, S. Adhikari, Effect of twist and rotation on vibration of functionally graded conical shells, International Journal of Mechanics and Materials in Design, 11(4) (2015) 425-437.
[10] M. Nejati, A. Asanjarani, R. Dimitri, F. Tornabene, Static and free vibration analysis of functionally graded conical shells reinforced by carbon nanotubes, International Journal of Mechanical Sciences, 130 (2017) 383-398.
[11] Q. Dai, Q. Cao, Y. Chen, Frequency analysis of rotating truncated conical shells using the Haar wavelet method, Applied Mathematical Modelling, 57 (2018) 603-613.
[12] Z. Qin, X. Pang, B. Safaei, F. Chu, Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions, Composite Structures, 220 (2019) 847-860.
[13] M. Shakouri, Free vibration analysis of functionally graded rotating conical shells in thermal environment, Composites Part B: Engineering, 163 (2019) 574-584.
[14] T. Liu, W. Zhang, J.J. Mao, Y. Zheng, Nonlinear breathing vibrations of eccentric rotating composite laminated circular cylindrical shell subjected to temperature, rotating speed and external excitations, Mechanical Systems and Signal Processing, 127 (2019) 463-498.
[15] F. Tornabene, On the critical speed evaluation of arbitrarily oriented rotating doubly-curved shells made of functionally graded materials, Thin-Walled Structures, 140 (2019) 85-98.
[16] F. Kiani, M. Hekmatifar, D. Toghraie, Analysis of forced and free vibrations of composite porous core sandwich cylindrical shells and FG-CNTs reinforced face sheets resting on visco-Pasternak foundation under uniform thermal field, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(10) (2020) 504.
[17] M. Arefi, G.H. Rahimi, Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity, Acta Mechanica, 223(1) (2012) 63-79.
[18] G. Arani, R. Bakhtiari, M. Mohammadimehr, M.R. Mozdianfard, Electromagnetomechanical responses of a radially polarized rotating functionally graded piezoelectric shaft, Turkish Journal of Engineering & Environmental Sciences, 36(1) (2011) 33-44.
[19] M. Mohammadimehr, M. Moradi, A. Loghman, Influence of the elastic foundation on the free vibration and buckling of thin-walled piezoelectric-based FGM cylindrical shells under combined loadings, Journal of Solid Mechanics, 6(4) (2014) 347-365.
[20] S. Mohammadrezazadeh, A.A. Jafari, The influences of magnetostrictive layers on active vibration control of laminated composite rotating cylindrical shells based on first-order shear deformation theory, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(13) (2019) 4606-4619.
[21] R. Karroubi, M. Irani-Rahaghi, Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: free vibration analysis, Applied Mathematics and Mechanics, 40(4) (2019) 563-578.
[22] R. Rostami, M. Irani Rahaghi, M. Mohammadimehr, Vibration control of the rotating sandwich cylindrical shell considering functionally graded core and functionally graded magneto-electro-elastic layers by using differential quadrature method, Journal of Sandwich Structures & Materials, 23(1) (2019) 132-173.
[23] M. Vinyas, On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT, Composite Structures, 240 (2020) 112044.
[24] D.-K. Ly, V. Mahesh, C. Thongchom, T. Nguyen-Thoi, Hybrid control of laminated FG-CNTRC shell structures using an advanced smoothed finite element approach based on zig-zag theory, Thin-Walled Structures, 184 (2023) 110463.
[25] S.M. Banijamali, A.A. Jafari, Vibration analysis and critical speeds of a rotating functionally graded conical shell stiffened with Anisogrid lattice structure based on FSDT, Thin-Walled Structures, 188 (2023) 110841.
[26] P. Sasikumar, R. Suresh, S. Gupta, Stochastic finite element analysis of layered composite beams with spatially varying non-Gaussian inhomogeneities, Acta Mechanica, 225(6) (2014) 1503-1522.
[27] K. Pandit Mihir, N. Singh Bhrigu, H. Sheikh Abdul, Stochastic Free Vibration Response of Soft Core Sandwich Plates Using an Improved Higher-Order Zigzag Theory, Journal of Aerospace Engineering, 23(1) (2010) 14-23.
[28] S. Dey, T. Mukhopadhyay, H.H. Khodaparast, S. Adhikari, Stochastic natural frequency of composite conical shells, Acta Mechanica, 226(8) (2015) 2537-2553.
[29] S. Dey, T. Mukhopadhyay, S. Sahu, G. Li, H. Rabitz, S. Adhikari, Thermal uncertainty quantification in frequency responses of laminated composite plates, Composites Part B: Engineering, 80 (2015) 186-197.
[30] m. karkon, S. Ghoohestani, F. Shahabyan Moghaddam, Stability and Free Vibration Analysis of Plates with Random Material Property using Stochastic Finite Element Method, Journal Of Applied and Computational Sciences in Mechanics, 30(2) (2019) 151-160.
[31] M. Fakoor, H. Parviz, A. Abbasi, Uncertainty Propagation Analysis in Free Vibration of Uncertain Composite Plate Using Stochastic Finite Element Method, Amirkabir Journal of Mechanical Engineering, 52(12) (2019) 3503-3520.
[32] X. Peng, D. Li, H. Wu, Z. Liu, J. Li, S. Jiang, J. Tan, Uncertainty analysis of composite laminated plate with data-driven polynomial chaos expansion method under insufficient input data of uncertain parameters, Composite Structures, 209 (2019) 625-633.
[33] G. Balokas, S. Czichon, R. Rolfes, Neural network assisted multiscale analysis for the elastic properties prediction of 3D braided composites under uncertainty, Composite Structures, 183 (2018) 550-562.
[34] A. Azrar, M. Ben Said, L. Azrar, A.A. Aljinaidi, Dynamic instability analysis of magneto-electro-elastic beams with uncertain parameters under static and parametric electric and magnetic fields, Composite Structures, 226 (2019) 111185.
[35] N. Cheraghi, M. Miri, M. Rashki, Probabilistic Evaluation on the Free Vibration of Functionally Graded Material Plates Using 3D Solution and Meta-Model Methods, Journal of Computational Methods in Engineering, 39(1) (2022) 45-66.
[36] M. Noorian, M. Ravandi, Uncertainty quantification of natural frequencies of flax/epoxy composite laminates based on a polynomial chaos expansion method, Journal of Science and Technology of Composites, 8(1) (2021) 1327-1338.
[37] J.N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis, 2nd ed., CRC Press, Boca Raton, 2003.
[38] F. Ebrahimi, A. Dabbagh, A. Rastgoo, Vibration analysis of porous metal foam shells rested on an elastic substrate, The Journal of Strain Analysis for Engineering Design, 54(3) (2019) 199-208.
[39] N.V. Nguyen, J. Lee, H. Nguyen-Xuan, Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers, Composites Part B: Engineering, 172 (2019) 769-784.
[40] R. Bahaadini, A.R. Saidi, Z. Arabjamaloei, A. Ghanbari-Nejad-Parizi, Vibration Analysis of Functionally Graded Graphene Reinforced Porous Nanocomposite Shells, International Journal of Applied Mechanics, 11(07) (2019) 1950068.
[41] M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content, ACS Nano, 3(12) (2009) 3884-3890.
[42] B. Yang, S. Kitipornchai, Y.-F. Yang, J. Yang, 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates, Applied Mathematical Modelling, 49 (2017) 69-86.
[43] B. Yang, J. Mei, D. Chen, F. Yu, J. Yang, 3D thermo-mechanical solution of transversely isotropic and functionally graded graphene reinforced elliptical plates, Composite Structures, 184 (2018) 1040-1048.
[44] B. Yang, W. Chen, H. Ding, Three-dimensional elastostatic solutions for transversely isotropic functionally graded material plates containing elastic inclusion, Applied Mathematics and Mechanics, 36(4) (2015) 417-426.
[45] B. Yang, J. Yang, S. Kitipornchai, Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity, Meccanica, 52(10) (2017) 2275-2292.
[46] V. Mahesh, D. Harursampath, Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM, Engineering with Computers, 38(2) (2022) 1029-1051.
[47] M. Amabili, Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, Cambridge, 2008.
[48] C.T. Loy, K.Y. Lam, J.N. Reddy, Vibration of functionally graded cylindrical shells, International Journal of Mechanical Sciences, 41(3) (1999) 309-324.
[49] S. Chakraverty, S. Tapaswini, D. Behera, Fuzzy Differential Equations and Applications for Engineers and Scientists, in, 2016.
[50] L. Zhang, Y. Xiang, G.W. Wei, Local adaptive differential quadrature for free vibration analysis of cylindrical shells with various boundary conditions, International Journal of Mechanical Sciences, 48(10) (2006) 1126-1138.
[51] A.R. Ghasemi, M. Mohandes, Free vibration analysis of rotating fiber–metal laminate circular cylindrical shells, Journal of Sandwich Structures & Materials, 21(3) (2017) 1009-1031.
[52] Y.H. Dong, B. Zhu, Y. Wang, Y.H. Li, J. Yang, Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load, Journal of Sound and Vibration, 437 (2018) 79-96.
[53] A. Kumaravel, N. Ganesan, R. Sethuraman, Buckling and Vibration Analysis of Layered and Multiphase Magneto‐Electro‐Elastic Beam Under Thermal Environment, Multidiscipline Modeling in Materials and Structures, 3(4) (2007) 461-476.