

Amirkabir Journal of Mechanical Engineering

Amirkabir J. Mech. Eng., 56(5) (2024) 651-678 DOI: 10.22060/mej.2024.22968.7705

Redesign of energy recovery device to keep the production recovery constant

Abdollah Eskandari Sani* 回

Department of Mechanical Engineering, Payame Noor University, Tehran

ABSTRACT: One of the problems of producing fresh water by reverse osmosis is its sensitivity to process conditions. In this article, a method for redesigning the hydraulic turbocharger rotor as an energy Recovery device in desalination units has been discussed. For this purpose, firstly, the performance of a desalination unit in operation is investigated. Then, using turbomachinery similarity relations and CFD, two new rotors have been designed for two high- and low-pressure modes and replaced with the primary rotor. The validated results with the test show that despite changing membrane inlet pressure, the amount of produced water was not changed, the total efficiency has increased by more than 4% and the energy recovery has increased by about 2% in the high-pressure mode, which shows that this method can be used in situations where the pressure change of the membranes is noticeably higher or lower than the initial design pressure.

Review History:

Received: Feb. 09. 2024 Revised: Aug. 19, 2024 Accepted: Aug. 22, 2024 Available Online: Sep. 04, 2024

Keywords:

Reverse Osmosis Permeate Water Energy Recovery Hydraulic Turbocharger CFD

1-Introduction

The increase in the need for fresh water and the limitation of natural resources have led to the use of industrial water softeners, especially units that work with the reverse osmosis method, to produce drinking water all over the world. [1]. Usually, in the reverse osmosis method, the waste energy returned from the filtration membranes is used with the help of energy recovery devices. The hydraulic turbocharger is one of the centrifugal energy recovery equipment, which is widely used in reverse osmosis desalination units due to its simplicity of design, flexibility in operation and relatively low supply cost [2]. This equipment has a rotor including the impeller of the pump section, the impeller of the turbine section and the axis connected to them, as well as the outer shell in which the rotor is placed. In many cases, due to the change of working conditions with the initial design, it is necessary to adapt the hydraulic conditions of the entire circuit to their optimal working point [3]. One of the common ways to change the general conditions of desalination units is to use a variable frequency drive (VFD), a pressure relief valve and a turbocharger equipped with an electric motor. However the use of these methods generally requires a waste of energy and a high cost [4]. In the current research, a method has been adopted so that the flow rate of the produced water remains constant and the total efficiency does not change

significantly (more than 10%) as mentioned in section 2. The main difference of this research is focused on the changes in the inlet pressure to the membrane and as a result the return water pressure from it at the inlet to the turbocharger, which is discussed in section 3.

2- Method description

In this article, a more affordable option has been discussed. To adjust the operating condition of the plant with raw water condition and membrane inlet pressure, the performance characteristic of the turbocharger has been modified by replacing new rotors. A. When the site condition changes, the existing rotor can be replaced with a new one which is designed for that condition. To do this, two situations were considered: The high-pressure mode when the membrane required pressure is higher than the initial design pressure, and the low-pressure mode when the membrane required pressure is lower than the initial design pressure. The aim is to modify the design of the turbocharger rotor in such a way to achieve the required pressure without a significant change in the permeate recovery in each case. In fig. 1, the steps of the work are represented.

The steps of the work Firstly, the performance of an existing turbocharger was investigated. For this purpose, the flow field inside the existing turbocharger has been modelled

*Corresponding author's email: a.eskandari@pnu.ac.ir

Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

Geometric	Values	hydraulic	Values	Geometric
dimension		parameters		dimension
S				S
Dto	86	Q_P (Inlet	150	Dto
	mm	Flow)	(m³/h)	
Dti	41	Pin_p	40	Dti
	mm		(bar)	
bt	17.5	Pout_P	65	bt
	mm		(bar)	
Dpo	86	Pin_T	63	Dpo
	mm		(bar)	
Dpi	48.8	Pout_T	1 (bar)	Dpi
	mm			
bp	18	Q_R (Reject	100	bp
	mm	Flow)	(m³/h)	
Nb (blade	8	Number of	103	Nb (blade
number)		membrane		number)
		S		
SL	0.6	η (Total	60.4%	SL
(horizontal	mm	Efficiency,		(horizontal
clearance))		Eq.2)		clearance))
SR	3.5			SR
(vertical	mm			(vertical
clearance)				clearance)
L	54			L
(clearance	mm			(clearance
length)				length)

Table 1. The geometric specification and hydraulic parameters of the plant

Fig. 1. The main effective dimensions in the hydraulic characteristics of the turbocharger rotor

Table 2. Hydraulic conditions for the main rotor and
two new rotors

Hydraulic Parameters	Existing rotor	High pressure rotor (1)	Low pressure rotor (2)
(Pout_P)	65 bar	68 bar	60 bar
(Pin_T)	63 bar	66 bar	58 bar
(Pout_P - Pin_P)	25 bar	28 bar	20 bar
(Pin_T - Pout_T)	62 bar	65 bar	57 bar
(Qp)	150 m3/h	150 m3/h	150 m3/h
(Qr)	100 m3/h	100 m3/h	100 m3/h

in three dimensions and simulated using CFD analysis. The results have been compared and validated with the site data. Then, using fluid mechanics and similarity relations, two new rotors were designed and the new flow field inside them simulated for two pressure modes. Finally, the obtained data for new rotors were validated again with experimental test results. It has been shown that replacing new rotors can lead to a new situation where the amount of permeate water remains unchanged despite the changing membrane condition.

3- Analysis of the Existing Plant Conditions

To investigate the effect of the rotor design on working conditions, a medium plant with a production capacity of 1260 m3/day (150 m3/h of raw water), has been studied. In this plant, a high-pressure pump is used with a turbocharger. The hydraulic parameters of the plant and the main geometric specifications of the original turbocharger are presented in Table 1 and Fig. 1.

Using CFD Analysis, the working condition for the existing turbocharger has been obtained at about 16570 rpm and the shaft power of 127 kW (Fig. 10). The result has been validated with test results.

4- Flow field analysis in new rotors

Using new hydraulic conditions for low- and highpressure modes, the new rotors were preliminary designed using turbomachinery affinity law and the flow field at the pump and turbine section has been simulated. Two pressure mode parameters are presented in Table 2.

Fig. 2 shows the contour of the static pressure in the pump and turbine section for new working conditions in a section parallel to the impeller plane.

5- Results

In the test process, to adjust the flow rate of feed and produced water, in accordance with the values used in the hydraulic analysis, the speed of the high-pressure pump and the outlet valve of the wastewater was been adjusted. To compare the design parameters of new rotors, the data obtained from the test and the results obtained from the simulation are shown in Table 3.

HPIP is the input power of the HP pump, Wturbo is the power generated by the turbocharger, and ER is the energy recovery percent.

Fig. 2. Static pressure contour in pump and turbine section for new working condition

Table 3. The results of the test data for three rotors, original, high-pressure and low-pressure rotor

Rotor	Eff (%)	HPIP (kW)	W _{Turbo} (kW)	ER (%)
Original	60.04	205.5	102.2	30.2
Rotor1	64.6	205.5	114.4	32.3
Rotor1	58.8	205.5	81.7	26.3

6- Conclusion

The obtained results show that the design parameters obtained from the similarity methods agree with both the flow field simulation results and the experimental test data with an acceptable difference, and in cases where computer optimization or experimental testing is not possible, it can be a reliable method. According to the results, it can be concluded that in order to keep produced water constant, replacing a new redesigned rotor with the existing one makes sense and is effective economically and hydraulically. In some cases (when high pressure is needed), this method even could lead to higher efficiency and cause a longer life of the turbocharger (due to the use of two or three rotors during the year).

References

- S. Avlonitis, K. Kouroumbas, N. Vlachakis, Energy consumption and membrane replacement cost for seawater RO desalination plants, Desalination, 157(1-3) (2003) 151-158.
- [2] T.A. El-Sayed, A.A.A. Fatah, Performance of hydraulic turbocharger integrated with hydraulic energy management in SWRO desalination plants, Desalination, 379 (2016) 85-92.
- [3] A.E. Sani, Design and synchronizing of Pelton turbine with centrifugal pump in RO package, Energy, 172 (2019) 787-793.
- [4] A. Drak, M. Adato, Energy recovery consideration in brackish water desalination, Desalination, 339 (2014) 34-39.

نشریه مهندسی مکانیک امیر کبیر

نشریه مهندسی مکانیک امیرکبیر، دوره ۵۶، شماره ۵، سال ۱۴۰۳، صفحات ۶۵۱ تا ۶۷۸ DOI: 10.22060/mej.2024.22968.7705

اصلاح توربوشارژر هیدرولیکی واحد نمکزدایی به روش اسمز معکوس متناسب با تغییر شرایط فرآیندی

عبدالله اسکندری ثانی 🔍

گروه فنی و مهندسی، دانشگاه پیام نور، تهران، ایران.

خلاصه: تولید آب شیرین به روش اسمز معکوس، از گزینههای به صرفه در بسیاری از کشورها است. یکی از مشکلات این روش، کاهش مقدار آب تولیدی به دلیل تغییر شرایط فرآیندی و آب خام مصرفی است. در این مقاله، به روشی برای بازطراحی روتور توربوشارژر هیدرولیکی به عنوان اصلیترین قطعه این تجهیز که نقش بازیافت کننده انرژی در واحدهای آب شیرین کن را دارد، پرداخته شده است. بدین منظور، ابتدا عملکرد یک واحد نمکزدایی در حال بهره برداری بررسی و سپس با استفاده از روابط تشابه در توربوماشینها و دینامیک سیالات محاسباتی، دو روتور جدید برای توربوشارژر موجود طراحی و ساخته شدند تا برای دو حالتی که به -دلیل تغییر شرایط، ممبران به فشار بالاتر یا پایین تر از طراحی اولیه نیاز دارد، جایگزین روتور موجود شوند. برای صحت سنجی، نتایج تست با پارامترهای طراحی مقایسه شدهاند. نتایج نشان می دهد علی رغم اعمال تغییر در فشار ورودی ممبران، توربوشارژر با روتورهای جدید علاوه بر ثابت نگهداشتن درصد تولید آب، باعث شده است مقدار بازیافت انرژی ثابت بماند و راندمان کل نیز در حالت فشار بالا، از راندمان توربوشارژر اولیه بیش از ۴درصد و بازیافت انرژی حدود که نشان می دهد از بین روش می از این روش می از می از می روش می از شرایطی که تغییر فشار می رانیه بیش از ۴درصد و بازیافت انرژی حدود ۲درصد بیش تر شود که نشان می دهد از این روش می وان در

تاریخچه داوری: دریافت: ۱۴۰۲/۱۱/۲۰ بازنگری: ۱۴۰۳/۰۵/۲۹ پذیرش: ۱۴۰۳/۰۶/۱۱ ارائه آنلاین: ۱۴۰۳/۰۶/۱۴

کلمات کلیدی: اسمز معکوس نمک زدایی توربوشارژر هیدرولیکی دینامیک سیالات محاسباتی

۱ – مقدمه

افزایش نیاز به آب شیرین و محدودیت منابع طبیعی سبب شده است تا استفاده از آب شیرین کنهای صنعتی به یکی از روشهای اصلی برای تولید آب شرب تبدیل شود. از سوی دیگر، گران بودن فرآیندهای نمکزدایی موجب شده است تا در سالهای اخیر تلاشها برای توسعه فنآوری تولید غشاء و دستگاههای بازیافت انرژی^۱ در روش اسمز معکوس^۲ که دارای بیشترین سهم در تولید آب آشامیدنی در سراسر جهان است، روز به روز افزایش یابد[۱].

یکی از موانع اصلی برای گسترش صنعت نمکزدایی از آب شور، هزینه تولید آب شیرین به این روش است. بخش عمده این هزینه به مصرف انرژی الکتریکی بر می گردد که بیش از ۵۰ تا ۶۰ درصد از کل هزینههای تولید را در بر می گیرد[۲]. به همین دلیل در بیش تر واحدهای نمکزدایی متوسط و بزرگ، استفاده از تجهیزات بازیافت انرژی اجتناب ناپذیر است.

1 Energy Recovey Device (ERD)

Reverse Osmosis (RO)

* نویسنده عهدهدار مکاتبات: a.eskandari@pnu.ac.ir

به طور کلی برای طراحی دستگاههای بازیافت انرژی دو مکانیزم وجود دارد: مکانیزم گریز از مرکز و جابجایی مثبت. در واحدهای نمکزدایی اسمز معکوس، مکانیزم گریز از مرکز به دلیل سادگی طراحی، در دسترس بودن، انعطاف پذیری در عملکرد و پایین بودن نسبی میزان سرمایه گذاری اولیه و هزینه بهرهبرداری به مکانیزم جابجایی مثبت ترجیح داده میشوند.

توربوشارژر هیدرولیکی یکی از تجهیزات بازیافت انرژی از نوع گریز از مرکز است که به دلیل سادگی طراحی، انعطافپذیری در عملکرد و پایین بودن نسبی هزینه تأمین، به صورت گسترده در واحدهای نمکزدایی به روش اسمز معکوس استفاده می شود.

این تجهیز دارای یک روتور شامل پروانه بخش پمپ، پروانه بخش توربین و محورمتصل به آنها و همچنین پوسته بیرونی است که روتور درون آن قرار می گیرد.

در سازو کار اسمز معکوس، برای افزایش فشار آب خام ورودی به مقداری که برای ورود به ممبرانهای تصفیه نیاز است از پمپ فشار قوی استفاده می شود که بیش از ۸۵ درصد انرژی کل واحد را مصرف می کند [۳] و در

(Creative Commons License) حقوق مؤلفین به نویسندگان و حقوق ناشر به انتشارات دانشگاه امیرکبیر داده شده است. این مقاله تحت لیسانس آفرینندگی مردمی (Creative Commons License) او حقوق مؤلفین به نویسندگان و حقوق ناشر به انتشارات دانشگاه امیرکبیر داده شده است. این مقاله تحت لیسانس آفرینندگی مردمی (Creative Commons License) او حقوق مؤلفین به نویسندگان و حقوق ناشر به انتشارات دانشگاه امیرکبیر داده شده است. این مقاله تحت لیسانس آفرینندگی مردمی (Creative Commons License) او حقوق ناشر به انتشارات دانشگاه امیرکبیر داده شده است. این مقاله تحت لیسانس آفرینندگی مردمی (Creative Commons License) او حقوق ناشر به انتشارات دانشگاه امیرکبیر داده شده است. این مقاله تحت لیسانس آفرینندگی مردمی (Creative Commons License) او که ا

2

نتیجه میزان بازیافت انرژی توسط توربوشارژ از اهمیت زیادی برخوردار است. مصرف انرژی در این روش، عمدتاً تحت تأثیر دو عامل است: فشار آب خام در ورود به ممبران برای رسیدن به مقدار آب تولیدی مورد نیاز و عملکرد پمپ تغذیه فشار قوی در ترکیب با تجهیز بازیافت انرژی [۴]. فشار آب خام در ورود به ممبران به مقدار مواد جامد محلول در آب خام^۲ ، میزان رسوب در غشاء و نحوه چینش ممبرانها بستگی دارد [۵].

بنابراین، در بسیاری از موارد به دلیل تغییر شرایط کاری نسبت به طراحی اولیه، نقطه کار مجموعه تجهیزات دخیل در فرآیند مذکور به جای یک نقطه مشخص، در طیفی از نقاط کاری (گاهی بسیار دورتر از شرایط بهینه) قرار می گیرد. از آن سو، به این علت که تجهیزات توربوماشینی (مانند پمپ فشار قوی و توربوشارژر) دارای نقطه کار بهینهای برحسب دبی، فشار و سرعت دورانی هستند، لازم است شرایط هیدرولیکی کل مدار با نقطه کار بهینه آنها تطبیق داشته باشد[۶]. این نکته نیز باید مد نظر قرار گیرد که منحنی عملکرد پمپ فشار قوی خود تحت تأثیر مقاومت هیدرولیکی بخش پایین دست آن یعنی ممبران و توربوشارژر است و باید با شرایط هیدرویکی آنها تطابق داشته باشد [۴].

دلایل ذکر شده در بالا، مستلزم آن است که در طراحی تجهیز بازیافت انرژی، کل محدوده عملکردی فرآیند در نظر گرفته شود. اساساً پارامترهای هیدرولیکی مانند دبی آب خام، فشار در ورود به ممبران، دبی پساب و آب تولید شده تحت تأثیر نرخ بازیافت آب شیرین و میزان نفوذپذیری ممبران قرار دارند. توماس منث و همکارانش، محدوده هیدرولیکی سه بعدی را برای پوشش عملکرد یک واحد اسمز معکوس پیشنهاد دادهاند که در آن تأثیر نرخ بازیافت به عنوان یک متغیر که بیانگر شرایط هیدرولیکی مجاز است، لحاظ گردیده است [۳].

از روشهای متداول برای تغییر شرایط عمومی واحدهای نمکزدایی، استفاده از درایو فرکانس متغیر^۲، شیر فشار شکن و توربوشارژر مجهز به موتور الکتریکی است. درایو، نقطه کار و حداکثر توان مصرفی موتور را بر اساس تشابه هیدرولیکی (که لزوماً با شرایط مد نظر تطبیق نخواهد داشت) تغییر میدهد. شیر فشار شکن نیز به طور قابل توجهی باعث اتلاف انرژی میشود. موتور کمکی متصل به توربوشارژر، برای جبران فاصله بین فشار خروجی از توربوشارژر و فشار مورد نیاز ممبران [۷] استفاده میشود، اما این روش نیز به توان اضافه برای موتور کمکی نیاز دارد و معمولاً برای واحدهای نمکزدایی در مقیاسهای بزرگ، مقرون به صرفه است.

در پژوهش حاضر روشی اتخاذ شده است تا متناسب با تغییر شرایط فرآیندی، دبی آب تولید شده ثابت بماند و راندمان کل نیز دچار تغییر قابل ملاحظه (بیش از ۱۰ درصد) نشود. این روش در تحقیقاتی که در بخش ۲ به آنها اشاره شده است، دیده نشده است، زیرا در همه موارد تأکید اصلی بر بهینه سازی توربوشارژر مطابق با نقطه طراحی اولیه است و راهکاری برای تطبیق عملکرد آن با تغییر شرایط بالادست و پایین دست آن که همیشه در عمل اتفاق می افتد، ارائه نشده است. تفاوت اصلی این پژوهش بر تغییرات فشار ورودی به ممبران و در نتیجه فشار آب برگشتی از آن در ورودی به توربوشارژر متمرکز است که در بخش ۳ به آن پرداخته شده است.

۲- پیشینه تحقیق

لوزیر و همکاران آزمایشات خود را روی مدل جدیدی از توربوشارژر هیدرولیکی انجام داده و به این جمع بندی رسیدند که توربوشارژر هیدرولیکی میتواند تا ۲۳٪ توان ورودی را کاهش دهد [۸].

محمد فاروق و همکارانش به طور مفصل عملکرد چندین سیستم بازیافت انرژی مورد استفاده در واحدهای شیرینسازی آب شور را تشریح و راندمان آنها را با توجه به شرایط عملیاتی برای یک دوره یک ساله و تأثیر آن بر صرفه جویی کل انرژی و مصرف کل انرژی توسط پمپ فشار قوی مقایسه کردهاند [۹].

مارک ویلف و همکارانش به بررسی چیدمان و پارامترهای عملکرد آب شیرین کنهای بزرگ آب دریا و فنآوریهای برجستهای که به کاهش هزینه تولید منجر شدهاند، پرداختند. آنها نتایج تحقیقاتشان را در قالب فرآیندی جدید که منجر به بهینه شدن عملکردها و کاهش توان مصرفی میشود، ارائه نمودند [۱۰].

فریتزمن و همکارانش وضعیت فعلی روش نمکزدایی با مکانیزم اسمز معکوس را مورد بررسی قرار دادند و کل فرآیند، از مصرف آب خام تا مرحله پس از تصفیه را تجزیه و تحلیل کردند. در این تحقیق آنها انرژی مورد نیاز واحدهای اسمز معکوس و همچنین سیستمهای بازیافت انرژی کنونی را با رویکرد کاهش مصرف انرژی تشریح و هزینههای روش مذکور را مورد ارزیابی قرار دادند [۱۱].

ماگید جرجیس بین دستگاههای بازیافت انرژی در پکیجهای آب شیرین کن اسمز معکوس از نوع گریز از مرکز و جابجایی مثبت مقایسهای جامع انجام داد. او با استفاده از دادههای تجربی سیستمهای مختلف اسمز معکوس ، دستگاه بازیافت انرژی متفاوتی را از نظر مقدار انرژی مصرفی

¹ Total dissolved solids (TDS)

² VFD

شکل ۱. دیاگرام جریان فرآیند در یک واحد آب شیرین کن به روش اسمز معکوس با توربوشارژر بازیافت کننده انرژی

Fig. 1. Process flow diagram in a reverse osmosis desalination unit with energy recovery turbocharger

مخصوص، راندمان و مزایا و معایب مورد بررسی قرار داد [۱۲].

چان فنگ وان و همکارانش روی مدلی از اسمز با فشار تأخیری کار کردند که انتظار میرود مقدار قابل توجهی از انرژی مورد نیاز برای یک متر مکعب آب شیرین (انرژی مخصوص) را کاهش دهد. مطالعه آنها نشان میدهد ترکیب این روش با روش اسمز معکوس میتواند تا یک سوم مصرف انرژی مخصوص را کاهش دهد [10].

تامر السید و امر عبدالفتاح در پژوهش خود به بررسی تعادل عملکردی بین قسمتهای پمپ و توربین توربوشارژر، تاثیر تغییر سرعت روتور روی عملکرد توربوشارژر و تاثیر میزان باز شدگی شیر تنظیم قسمت توربین روی عملکرد توربوشارژر (سرعت، توان، هد و دبی) پرداختند [۲].

سیگرید آرنا و همکارانش دستگاههای بازیافت انرژی را که در جزایر قناری نصب هستند مورد بررسی قرار دادند تا تعیین نمایند کدام یک از آنها برای نصب در واحدهای آب شیرین کن با ظرفیت متوسط و بزرگ در آینده با توجه به شاخصهای دادههای عملکرد، تعمیر و نگهداری، عیبیابی و میزان مصرف انرژی مناسبتر هستند [۱۴].

اندریو بوما و همکارانش، انواع شاخصهای مقایسه برای مصرف انرژی و اکسرژی را در واحدهای آب شیرین کنهای ترکیبی بررسی کردند و به این جمع بندی رسیدند که روش اسمز معکوس از دیگر روشهای ترکیبی تا دو برابر بهینهتر است. در این مطالعه هزینه مواد اولیه، هزینه مصرف انرژی و ضرایب انتقال انرژی مورد بررسی قرار گرفتهاست [1۵].

اندروجیمز و همکارانش، برای کاهش مصرف انرژی در مکانیزم اسمز معکوس، چیدمانهای مختلف پمپ فشار قوی و تجهیزات بازیافت انرژی را با یکدیگر مقایسه و تأثیر انواع مختلف تجهیزات بازیافت انرژی را مورد بررسی قرار دادند [۱۶].

بینگ هوانگ، اصول طراحی سیستم یکپارچه سازی بازیافت انرژی را مورد تجزیه و تحلیل قرار دادهاند و روشهایی را برای کاهش مصرف انرژی و افزایش نرخ تولید ارائه نمودند. تحقیقات آنها، دستورالعملهایی را برای طراحی و انتخاب دستگاههای بازیافت انرژی تحت شرایط عملیاتی متفاوت بدست میدهد [۱۷].

۳- تشریح روش

به منظور بررسی تأثیر هیدرولیکی توربوشارژری، دیاگرام جریان فرآیند پمپ فشار قوی، ممبران و توربوشارژر به صورت شماتیک در شکل ۱ نشان داده شده است. آب خام ابتدا توسط یک پمپ تغذیه وارد بخش پیش تصفیه شده و سپس وارد پمپ فشار قوی میشود و فشار آن تا حد میانی افزایش داده میشود. بعد از این مرحله توربوشارژر قرار دارد که جریان خروجی از پمپ فشار قوی وارد بخش پمپ آن میشود و فشار آن به مقدار لازم برای ورود به ممبرانهای اصلی تصفیه افزایش مییابد. سیال خروجی از ممبران به دو بخش آب شیرین (آب تصفیه شده) و آب شور(پساب ممبران) تقسیم میشود. انرژی آب شور با استفاده از بخش توربین توربوشارژر به انرژی

شکل ۲. منحنیهای هیدرولیکی (هد - دبی) پمپ فشار قوی به همراه توربوشارژر در حالتهای مختلف مقاومت مدار

Fig. 2. Hydraulic curves (head-flow) of high pressure pump with turbocharger in different pressure modes

مکانیکی برای بخش پمپ آن تبدیل میشود و پساب ورودی به توربوشارژر در نهایت به از آن خارج می گردد و بدین ترتیب نمودار جریان فرآیند، تکمیل می شود.

در این روش، پمپ فشار قوی و بخش پمپ توربوشارژر به صورت سری قرار می گیرند و در نتیجه دبی گذرنده از آنها یکسان (دبی آب خام) و فشار کل برابر با مجموع فشارهای تولیدی در هر بخش است. بنابراین منحنی عملکرد این دو تجهیز را میتوان به صورت یک منحنی فشار کل بر حسب دبی آب خام نشان داد. ممبران بعد از توربوشارژر نیز همانند یک مقاومت هیدرولیکی عمل کرده و منحنی فشار کل (پمپ و توربوشارژر) را در نقطه کاری مدار قطع می کند.

همانطور که در شکل ۲ به صورت شماتیک نشان داده شده است اگر مقاومت ممبران به دلیل تغییر شرایط در طول بهرهبرداری تغییر نماید (به عنوان نمونه به خاطر تغییر دما یا شوری آب خام و یا گرفتگی ممبران)، نقطه تقاطع آن با منحنی فشار کل تغییر میکند. از آن جایی که هر نقطه تقاطع، معادل یک فشار و یک دبی برای آب خام است، تغییر فشار آب خام باعث تغییر در دبی آب تولیدی، تغییر در میزان بازیافت انرژی و راندمان کل خواهد شد.

روشی که در این مقاله به آن پرداخته شده است آن است که متناسب با تغییر شرایط ممبران و در نتیجه نیاز به تغییر فشار آب خام ورودی به ممبران، فشار کل آب خام به نحوی تغییر داده شود تا دبی آن ثابت بماند. در این روش، تنها فشار تولید شده توسط توربوشارژر با تغییر شرایط طراحی روتور آن به عنوان اصلی ترین قطعه در این تجهیز تغییر داده شده است.

برای این منظور یک واحد در حال بهره برداری مورد مطالعه قرار گرفته است (در جدول ۱ اطلاعات هندسی و در جدول ۲ اطلاعات فرآیندی توربوشارژر مورد استفاده در سایت آب شیرین کن مورد مطالعه آورده شده است). روش کار به این صورت بوده است که با معلوم بودن مشخصات هندسی توربوشارژر موجود و اسکن سه بعدی، مدل کامل اجزای اصلی توربوشارژر بدست آمده است. سپس با توجه به نقطه کاری موجود، دو نقطه کار جدید برای آن در نظر گرفته شده است (به صورت فرضی برای دو حالت بالاتر و پایین تر از فشار نقطه کاری موجود). لازم به ذکر است در این تحقیق، برای ایجاد تغییر در فشار مورد نیاز ممبران (که در حالت واقعی ممکن است به خاطر گرفتگی ممبران، تغییر شوری یا دمای آب اتفاق بیفتد)، از یک شیر فشار شکن در مسیر پساب به سمت توربوشارژر استفاده شده است.

Fig. 3. Work flow diagram representing steps of design and validation

تشابه در توربوماشینها، ابعاد پروانههای بخش توربین و پمپ توربوشارژر (شامل قطر خروجی و عرض خروجی که بیش ترین تأثیر را در عملکرد پروانه دارند)، هندسه روتور جدید برای دو حالت بدست آمده است.

از آن جایی که تنها بخش روتور از توربوشارژر تغییر داده خواهد شد، و عملاً روابط تشابه دقیقاً به نقطه کاری جدید منتهی نخواهد شد (به دلیل وجود اصطکاک که به صورت هیدرولیکی از قوانین تشابه تبعیت نمی کند)، از شبیه سازی میدان جریان در کل بخش پمپ و توربوشارژر (حل عددی میدان جریان) برای بدست آوردن نقطه کاری در روتورهای جدید و فرآیند سعی و خطا استفاده شده است. در واقع روابط تشابه در توربوماشینها تنها به عنوان یک راهنمای اولیه حدود تغییرات در قطر و عرض خروجی پروانهها را با توجه به شرایط جدید بدست میدهند و برای رسیدن به اندازههای دقیق تر از شبیه سازی کامل میدان جریان و تغییر اندازه با توجه به نتایج شبیه سازی بهره گرفته شده است. در نهایت با قرار گرفتن حدود خطا به محدوده کمتر از شبیه سازی کامل میدان جریان و تغییر اندازه با توجه به نتایج شبیه سازی بهره گرفته شده است. در نهایت با قرار گرفتن حدود خطا به محدوده کمتر از شبیه سازی کامل میدان جریان و تغییر اندازه با توجه به نتایج شبیه سازی میدان به مازی کامل میدان جریان و تغییر اندازه با توجه به نتایج شبیه سازی میدان شبیه سازی کامل میدان جریان و تغییر اندازه با توجه به نتایج شبیه سازی میدان محدی میدان میدان مین میدان میدان میا میدان و تغییر اندازه با توجه به نتایج شبیه سازی میدان میدان محدی میدان موابط تشابه و حل عددی میدان داده شده است. برای صحت سنجی، نتایج شبیه سازی با دادههای تست مورد شده است. برای صحت سنجی، نتایج شبیه سازی با دادههای تست مورد مقایسه قرار گرفته است. مراحل انجام شده به صورت دیاگرام شکل ۳ نشان

نکتهای که باید به آن توجه داشت این است که معمولاً ابعاد پوسته در

هنگام طراحی به اندازه کافی بزرگتر در نظر گرفته می شود تا امکان تغییر قطر یا جایگزینی روتور جدید فراهم باشد. در این مقاله حدود تغییرات قطر کمتر از ۲۰ درصد (حداکثر در حدود ۴ میلیمتر بوده است، جداول ۶ و ۷). بنابراین بدون تغییر پوسته امکان جایگزینی روتورهای جدید وجود داشته است.

۴- مسأله مورد مطالعه

برای بررسی میزان تأثیر طراحی روتور در تغییر شرایط کاری، یک واحد متوسط اسمز معکوس با ظرفیت تولید ۱۲۶۰ متر مکعب در شبانه روز (معادل ۱۵۰ متر مکعب در ساعت آب خام) را که در آن از یک پمپ فشار قوی به همراه توربوشارژر استفاده شده است مورد مطالعه قرار دادهایم. مشخصات هندسی توربوشارژر اولیه مطابق با شکل ۴، در جدول ۱ آمده است:

مشخصات هیدرولیکی واحد در حال کار که در سایت اندازهگیری شده است، در جدول ۲ آمده است:

۴- ۱- مبنای محاسبه هد و راندمان

از آنجایی که مبنای محاسبه هد و نیز قوانین تشابه تغییر فشار کل از ورودی تا خروجی پمپ و توربین است، در اندازه گیریها و نیز دادههای بدست آمده از شبیه سازی، منظور از فشارهای بدست آمده، فشار کل است جدول ۱. مشخصات هندسی روتور توربوشارژر

مقدار	ابعاد هندسی (mm)
٨۶	قطر خروجی توربین (Dto)
41	قطر ورودی توربین (Dti)
VV/Δ	عرض خروجی توربین (Bt)
٨۶	قطر خروجی پمپ (Dpo)
۴٨/٨	قطر ورودی پمپ (Dpi)
١٨	عرض خروجی پمپ (Bp)
٨	تعداد پره (Nb)
• /۶	لقی بین محور و بیرینگ میانی (SL)
٣/۵	لقی متوسط بین جداره پروانه و پوسته(SR)
۵۴	طول لقی محور و بیرینگ میانی (L)

Table 1. Geometric characteristics of the turbocharger rotor

شکل ۴. ابعاد اصلی مؤثر در مشخصات هیدرولیکی روتور توربورشارژر

Fig. 4. The main effective dimensions in the hydraulic characteristics of the turbocharger rotor

جدول ۲. مشخصات هیدرولیکی واحد اسمز معکوس Table 2. Hydraulic characteristics of the reverse osmosis unit

مقدار	واحد	پارامترهای هیدرولیکی
10.	m³/h	جریان ورودی به پمپ (Q _p)
۴.	bar	فشار ورودی به بخش پمپ (Pinp)
۶۵	bar	فشار خروجی از بخش پمپ (Poutp)
۶۳	bar	فشار ورودی به بخش توربین (PinT)
٢	bar	فشار خروجی از بخش توربین (Pout)
۱۰۰	m³/h	دبی پساب (Q _R)
۱۰۳	_	تعداد ممبران
<u>/</u> ۶.	7.	راندمان کل (رابطه ۲)

شکل ۵. لقیهای بین بخش ثابت و دوار مؤثر در تلفات اصطکاکی Fig. 5. Clearances between fixed and rotating parts in calculating frictional losses

که شامل فشار استاتیکی، فشار دینامیکی و فشار ارتفاعی است که بر اساس رابطه (۱) بدست می آید:

$$P = P_{st} + \rho g z + \rho \frac{V^2}{2} \tag{1}$$

در این رابطه، P_{st} فشار استاتیکی (در اندازه گیری های، برابر با فشاری است که از گیج فشارسنج خوانده می شود)، Z ارتفاع مقطع تا سطح مرجع، و V سرعت متوسط در آن مقطع است که بر اساس مقدار دبی و سطح مقطع بدست می آید. برای بدست آوردن دبی از فلومتر الکترومگنتیک با دقت /1 متر مکعب بر ساعت استفاده شده است.

برای محاسبه راندمان توربوشارژر از رابطه زیر استفاده شده است:

$$\eta = \frac{(P_{out_{P}} - P_{in_{P}})Q_{P}}{(P_{in_{T}} - P_{Out_{T}})Q_{R}}$$
(Y)

تمامی فشارها در رابطه (۲) فشار کل است که از رابطه (۱) بدست می آید.

۵- محاسبه دور و توان تولیدی توربوشارژر

چون پروانه بخش پمپ و توربین در توربوشارژر از طریق یک محور به هم متصل هستند، و مولّد بخش پمپ، بخش توربین توربوشارژر است، نقطه کاری در عمل شرایطی است که توان مصرفی بخش پمپ با توان تولیدی بخش توربین برابر باشد. با توجه به اینکه هنگام کار، روتور کاملاً

درون پوسته قرار می گیرد و از بیرون هیچگونه دسترسی به آن وجود ندارد، نمی توان با استفاده از دورسنج، سرعت دورانی آن را اندازه گرفت و به صورت عملی بدست آوردن دور، تنها از طریق تحلیل فرکانسی و فرکانس گذار پره امکان پذیر است. برای بدست آوردن دور به روش تحلیلی نیز از تساوی توانها کمک گرفته شده است. از آنجایی که سرعت دورانی تابع شرایط دو بخش پمپ و توربین است، برای رسیدن به نقطه کاری، باید میدان جریان در پمپ و توربین است، برای رسیدن به نقطه کاری، باید میدان جریان در پمپ و توربین در دورهای مختلف شبیهسازی و نمودار توان بر حسب باشند، نقطه کاری محاسباتی توربوشارژر خواهد بود. البته در این محاسبه، علاوه بر توان در میدان جریان داخل پروانهها، باید تلفات اصطکاکی در جدارههای بیرونی پروانهها، بیرینگ شعاعی نگهدارنده شافت و نیز بیرینگ جدارههای بیرونی پروانهها، بیرینگ شعاعی نگهدارنده شافت و نیز بیرینگ که باعث اتلاف اصطکاکی می شوند نشان داده شده است. بدین ترتیب دور محاسباتی توربوشارژر از تقاطع نمودار توان دو بخش موربین و پمپ که باعث اتلاف اصطکاکی می شوند نشان داده شده است. بدین ترتیب توربوشارژر بدست می آید.

در مرحله بعد مجددا میدان جریان در هر دو بخش در دور محاسباتی بدست آمده از تلاقی نمودارهای توان (مرحله شبیهسازی قبلی)، تحلیل شده است و نتایج با مقادیر بدست آمده متناظر خود مقایسه شدهاند. این مقایسه برای اطمینان از روند تخمین دور و توان توربوشارژر با استفاده از تحلیل میدان جریان است. البته اعتبار سنجی نهایی با تطبیق نتایج بدست آمده از تست صورت گرفته است. همین روند برای روتورهای جدید که نحوه طراحی آنها در بخش ۷ توضیح داده شده است، انجام شده است.

پارامترهای تحلیل جریان	مقادیر یا مفروضات
شرايط تحليل عددى	جریان غیر قابل تراکم، حالت دائم و هم دما
سيال	آب دریا ,چگالی: ۹۹۸ کیوگرم بر متر مکعب ویسکوزیته: ۰/۰۰۱ (N.s/m ^{2)،}
مدل توربولانسى	مدل توربولانسی برای حل: انتقال تنش برشی
دامنه حل و روش شبیه سازی	میدان حل دوار، محاسبه نیروی کوریولیس، استفاده از تخمین صفحه میانی
ميدان جريان	برای میانیابی مقادیر بین بخش ثابت و دوار
زبری سطح	دیوارههای پروانه: ۵۰ میکرون، دیوارههای ولوت و دیفیوزر ۷۰ میکرون
شرياط مرزى ورودى	مقدار دبی جرمی مشخص
شرایط مرزی خروجی	فشار استاتیکی مشخص
شدت توربولانسی در ورود	حداقل مربعات نوسانات سرعت ۵٪

جدول ۳. شرایط مرزی و تنظیمات حل عددی Table 3. Boundary conditions and numerical solution settings

۶- تحلیل شرایط هیدرولیکی توربوشارژر موجود

برای بررسی عملکرد توربوشارژر هیدرولیکی موجود با شرایط هیدرولیکی مندرج در جدول فوق ابتدا بخش پمپ و توربین توربوشارژر به صورت سه بعدی مدل و میدان جریان آن برای تحلیل آماده شده است تا روش محاسبه توان و دور توربوشارژر با استفاده از تحلیل میدان جریان با دادههای توربوشارژر صحت سنجی گردد. معادلات حاکم برمیدان جریان در مختصات دوار شامل معادله پیوستگی، معادله مومنتوم، دو معادله نرخ انرژی جنبشی توربولانس و نرخ اتلاف انرژی توربولانس طبق معادله مدل توربولانسی انتقال تنش برشی^۱ در پیوست آمده است. برای حل عددی میدان جریان از نرم افزار انسیس سی اف ایکس^۲ نسخه ۲۰۲۴م استفاده شده است. در گسسته سازی های مشتق مکانی در معادله ناویر– استوکس از تقریب مرتبه دوم استفاده شده است. معیار همگرایی نیز حداکثر خطای جذر میانگین مربعها^۳ به میزان 5-10 در نظر گرفته شده است.

مدل سه بعدی میدان جریان در بخشهای مختلف توربوشارژر که از اسکن سه بعدی تمامی قطعات توربوشارژر موجود بدست آمده است در شکل ۶ نشان داده شده است:

۶– ۱– شبکه بندی

برای شبکه بندی پروانهها از نرم افزار توربوگرید^{*} و برای شبکه بندی ولوت و دیفیوزر از نرم افزار آی سی ای ام^۵ استفاده شده است تا شبکه متناسب با جریان در توربوماشینها ایجاد گردد. به منظور بررسی استقلال نتایج از شبکه بندی، توان مصرفی و تولیدی در بخش پمپ و توربین بر حسب تعداد شبکه بندی کل در هر دو بخش به صورت جداگانه محاسبه شده است و تعداد شبکه تا جایی که درصد تغییر در مقادیر توان از ۱ درصد کمتر شده بود افزایش داده شده است. در شکل ۷ تعداد شبکه در بخشهای پمپ و توربین نشان داده شده است. در اطراف جدارهها و پرهها، اندازه شبکه ریزتر و تعداد شبکه بیشتر شده است تا تغییرات سرعت و فشار دقیق تر محاسبه گردد (شکل ۸).

۶– ۲– پیش بینی سرعت روتور توربوشارژر موجود

میدان جریان در بخش توربین به ازای سرعتهای ۱۵۰۰۰ تا ۱۸۰۰۰ دور بر دقیقه تحلیل شده است. دبی ورودی بخش پمپ همان دبی آب خام و برابر با ۱۵۰ متر مکعب بر ساعت و دبی ورودی توربین، دبی پساب و

¹ Shear Stress Transport

² ANSYS CFX

³ RMS (Root mean squared)

⁴ Turbogrid

⁵ ICEM

شکل ۶. المانهای هیدرولیکی در تحلیل توربورشارژر، بخش پمپ (پروانه، دیفیوزر و ولوت)، بخش توربین (پروانه و ولوت)

Fig. 6. Hydraulic elements in the analysis of turbocharger, pump section (impeller, diffuser and volute), turbine section (impeller and volute)

شکل ۷. شبکهبندی میدان جریان در بخش پمپ و توربین توربوشارژر

$$K_{RR} = \frac{\pi R}{2Re.SR} \frac{0.02}{R_e^{0.2}} \frac{1 + SR / R}{1 + SR / 2R}$$
(δ)

$$K_{RZ} = \frac{2\pi R}{Re.SZ} \frac{0.075}{R_e^{0.2}} \frac{1 + SZ / R}{1 + SZ / 2R}$$
(8)

s در این روابط، R_e عدد رینولدز است که از رابطه (۲) بدست می آید. لقی بین دیواره های ثابت و دوار است.

$$Re = \frac{\rho R^2 \omega}{\mu} \tag{Y}$$

در رابطه فوق μ ویسکوزیته دینامیکی آب است.

بعد از محاسبه توان هیدرولیکی مصرفی و تولیدی بر در سرعتهای دورانی مختلف با استفاده ازشبیه سازی میدان جریان، سرعت دورانی محاسباتی از تلاقی منحنی این دو توان بدست می آید که در شکل ۱۰ نشان داده شده است.

این سرعت برای توربوشارژر موجود، در حدود ۱۶۵۷۰دور بر دقیقه و توان معادل شافت ۱۲۷کیلو وات بدست آمده است. برای بررسی میزان برابر با ۱۰۰ متر مکعب در ساعت است. شرایط حل عددی مطابق جدول ۳ اعمال شد. برای محاسبه توان منتقل شده از توربین به پمپ، توان اتلافات اصطکاکی^۱ بین محور و بیرینگ میانی و بین جدارههای پروانه پمپ و توربین با دیوارههای بیرونی (شکل ۹) از توان تولیدی توربین کم شده است.

برای محاسبه توان اتلاف اصطکاکی بین پروانههای پمپ و توربین با جدارههای بیرونی و نیز بین محور و بیرینگ محوری به ترتیب از رابطههای (۳) و (۴) استفاده شده است [۱۷]:

$$P_{RR} = K_{RR} \rho \omega^3 R^5 \tag{(\%)}$$

$$P_{RZ} = K_{RZ} \rho \omega^3 R^4 L \tag{(f)}$$

که در آن K_{RR} ضریب اصطکاک شعاعی، K_{RZ} ضریب اصطکاک محوری، ρ چگالی، ω سرعت دورانی، R شعاع دوران در هر حالت است و L طول ناحیه درگیری محور با بیرینگ میانی است. SRو SZ لقی شعاعی و محوری پروانه و محور روتور است (شکل ۱۰).

ضرایب اصطکاکی در دو حالت از روابط (۵) و (۶) بدست آمده است

¹ Friction losses

Fig. 9. Geometrical parameters in friction loss calculation

صحت توان و سایر پارامترهای هیدرولیکی بدست آمده از این روش، بار دیگر در این سرعت و با همان دبیهای قبلی شبیه سازی انجام شده است. در شکل ۱۱ کانتور فشار استاتیکی در پمپ و توربین برای این نقطه کاری در یک مقطع موازی با صفحه پروانهها نشان داده شده است.

همانطور که در کانتورهای فوق که در یک سطح مقطع عمود بر محور روتور نشان داده شده است، حدود تغییرات فشار استاتیکی در پمپ حداکثر ۲٫۵) بار (۳ مگاپاسکال) و به طور متوسط در مقطع خروجی ۲۵ بار

مگاپاسکال) است و همین متغیر در توربین از مقطع ورودی تا خروجی حدود ۶۰ بار (۶ مگاپاسکال) تغییر میکند. در جدول ۴ سایر پارامترهای هیدرولیکی برای این سرعت دورانی آمده است و خطای نسبی مقادیر بدست آمده از تحلیل جریان با مقادیر اندازه گیری شده در سایت نشان داده شدهاست. در جدول ۴، تغییر فشار کل بر اساس اختلاف فشار کل به صورت متوسط سطحی^۲، و بر اساس رابطه (۸) در دو مقطع ورودی و خروجی بدست

¹ Area Average

شکل ۱۱. کانتور فشار استاتیکی در دو بخش پمپ و توربین توربوشارژر

Fig. 11. Static pressure contour in pump and turbine section

. پارامترهای هیدرولیکی پمپ و توربین با روتور اصلی در سرعت ۱۹۷۰ دور بر دقیقه	جدول ۴.
---	---------

Table 4. Hydraulic parameters of the pump and turbine with the original rotor at a speed of 16750 rpm

پارامترهای هیدرولیکی پمپ	واحد	اندازهگیری	تحليل جريان	خطا (٪)
تغییر فشار کل بخش پمپ	bar	۲۵	۲۵/۷	Υ/λ
توان خالص شافت	kW	171	178/7	• /۶
راندمان (η_p)	7.	٨•/•	۸٣/۰	• /٢
پارامترهای هیدرولیکی توربین				
تغيير فشار كل بخش توربين	bar	87	87/3	٠/۴
توان خالص شافت	kW	171	188/0	• /Y
راندمان (η_t)	7.	۲۷/۶	۲۶/۹	• / A

شکل ۱۲. موقعیت نصب فشار سنج در ورودی و خروجیهای توربوشارژر

Fig. 12. Installation position of the pressure gauges at the inlet and outlet section of the turbocharger

$$Eff_{P} = \frac{(P_{out_P} - P_{in_{P}})Q_{P}}{Power_P}$$
(\.)

$$Eff_T = \frac{Power_T}{(P_{in_T} - (P_{Out_T})Q_R)}$$
(11)

$$Eff = Eff_T \times Eff_P \tag{11}$$

که در این روابط، اندیسهای in و Out به ترتیب مقاطع ورودی و خروجی و *Eff*_T ، *Eff*_P و *Eff* به ترتیب راندمان بخش پمپ، بخش توربین و کل توربوشارژر است.

در شکل ۱۲ موقعیت اندازه گیری فشارها در مقاطع ورودی و خروجی توربوشارژر به صورت شماتیک نشان داده شده است.

همانطور که در جدول ۴ آمده است، خطای مقادیر اندازه گیری شده با مقادیر بدست آمده از تحلیل دینامیک سیالات محاسباتی حداکثر ۲/۸ درصد است که نشان میدهد از این روش میتوان برای طراحی روتورهای جدید که در بخش بعدی آمده است استفاده کرد.

$$P_{avg} = \frac{1}{A} \int_{A} P dA \tag{A}$$

آمده است.

که در آن P_{avg} فشار متوسط در یک سطح است. برای محاسبه توان، جمع جبری ضرب داخلی نیرو در سرعت در تمامی المانهای روی جداره پروانههای پمپ و توربین بدست آمده است که در رابطه (۹) به صورت کلی نشان داده شده است:

$$Power = \sum_{Impeller Walls} \left(F_x . u + F_y . v + F_z . w \right)$$
(9)

که در این رابطه نیرو در هر سطح، از حاصل ضرب تنش برشی و نرمال در سطح سلول روی جداره در سه راستای مختلف محاسبه شده است. u، $v_{\rm e}$ w نیز سرعتها در سه راستای x، $y_{\rm e}$ z روی هر المان سطحی در جداره پروانهها هستند. برای محاسبه راندمان بخش پمپ و توربین و راندمان کل به ترتیب از روابط (۱۰)، (۱۱) و (۱۲) استفاده شده است:

شکل ۱۳. روند اعمال تغییرات و نقاط کاری متناظر در روتورهای جدید

۷- اعمال تغییرات در ابعاد روتور و شبیه سازی جریان در روتورهای جدید

برای تغییر ابعاد روتور به منظور رسیدن به نقاط کاری جدید، از قوانین تشابه در توربوماشین ها استفاده شده است. در این تحقیق اولویت رسیدن به هد و دبی جدید توربوشارژر است و افت راندمان اگر در محدوده قابل قبول باشد (کمتر از ۵ درصد)، اهمیت کمتری دارد. دلیل افت راندمان این است که در اینجا بجز روتور، سایر المان های هیدرولیکی مانند دیفیوزر و ولوتها بدون تغییر باقی میمانند (پوسته تغییری نمی کند)، در نتیجه تشابه هیدرولیکی به صورت کامل صورت نمی گیرد و به همین دلیل ممکن است برخی پارامترهای دیگر از جمله راندمان در محدوده بهینه مانند روتور اصلی قرار نگیرد. (محدوده بهینه راندمان در نقطه کاری متناظر ممکن است با راندمان روتور اولیه تفاوت چندانی نداشته باشد اما راندمان در نقطه کاری جدید که لزوماً با نقطه تشابه یکسان نیست ممکن است کمتر یا حتی بیشتر باشد). نکته دیگر این است که باید دبیها بدون تغییر بمانند تا بازیافت تولید ثابت باقی بماند. برای این منظور ابتدا پروانههای پمپ و توربین در هر سه بعد به یک اندازه تغییر داده شدهاند، که در نتیجه آن دبی متناظر نیز تغییر پیدا کرده است. برای ثابت نگهداشتن دبی، مجدداً عرض خروجی پروانهها تغییر داده شد تا دبی به حالت اولیه برگردد، اما هد متناظر در حالت دوم تغییر نکند. به دلیل اینکه پروفیل پرهها دو بعدی است، این هدف تنها با تغییر در عرض خروجي پروانهها امكان پذير است كه باعث تغيير سطح خروجي پروانه به همان نسبت خواهد شد و چون قطر ثابت نگهداشته می شود، دبی متناظر تقريباً با همين نسبت تغيير مي كند [١٧].

روند اعمال تغییرات و نقاط کاری متناظر در نمودار شکل ۱۳ آمده است: در روابط زیر، قوانین تشابه برای تغییر سایز روتور در دو حالت تشابه

کامل (در سه بعد) و در یک بعد (تغییر عرض خروجی پروانه برای تغییر دبی به حالت قبلی) آمده است: به حالت قبلی) آمده است: تغییر اندازه در سه راستا به اندازه ضریب K_s و تغییر نقطه کاری

متناظر:

$$K_{s} = \left(\frac{\Delta P_{2}}{\Delta P_{1}}\right)^{\frac{1}{2}}, \quad Q_{2} = Q_{1}K_{s}^{3},$$

$$d_{2} = d_{1}K_{s}, \quad b_{2} = b_{1}K_{s}$$
 (17)

تغییر مجدد عرض خروجی پروانه (تغییر اندازه در یک راستا) برای رسیدن به دبی قبل از تغییر ابعاد (بدیهی است در این مرحله قطر روتور ثابت نگه داشته شده است):

$$b_2^* = b_2 \left(\frac{Q_1}{Q_2}\right), \ d_2^* = d_2$$
 (14)

ابعاد پروانهها برای دو نقطه کاری جدید مطابق با روابط فوق بدست آمدهاند. حالت اول برای وضعیتی است که فرض شده است ممبران دچار رسوب و گرفتگی شده باشد و برای بدست آمدن درصد تولید مشابه قبل از گرفتگی، باید فشار آب خام ورودی به ممبران افزایش یابد اما دبی ورودی تغییری نداشته باشد. حالت دوم برای وضعیتی است که ممبرانها کاملاً نو و بدون گرفتگی باشند و شوری آب هم به دلیل تغییر دما کاهش پیدا کرده باشد. در این حالت، فشار لازم برای آب خام ورودی جهت رسیدن به درصد جدول ۵. شرایط هیدرولیکی برای روتور اصلی و دو روتور جدید

Table 5. Hydraulic conditions for the original and two new rotors

روتور اصلی	روتور تغییر یافته ۱	روتور تغيير يافته ۲	واحد	پارامترهای هیدرولیکی
۶۳	۶۸	۶.	bar	فشار کل ورودی به ممبران
۶۳	<i>\$</i> \$	۵۸	bar	فشار کل خروجی از ممبران
۲۵	۲۸	۲.	bar	تغيير فشار کل بخش پمپ
87	۶۵	۵۷	bar	تغيير فشار كل بخش توربين
۱۵۰	10.	۱۵۰	m³/h	دبی آب خام (دبی بخش پمپ)
۱	١	۱	m³/h	دبی پساب (دبی بخش توربین)

تولید مشابه کاهش پیدا می کند. شرایط هیدرولیکی این دو وضعیت فرضی در جدول ۵ آمده است.

مطابق با قوانین تشابه در روابط (۱۳) و (۱۴) و شرایط هیدرولیکی فوق برای روتورهای جدید (روتور ۱ – فشار بالا و ۲ – فشار پایین)، قطر و عرض خروجی پروانهها با استفاه از ضریب تشابه بدست آمدهاند که در جدول ۶ و ۷ نشان داده شده است.

۸- تحلیل میدان جریان در روتورهای جدید

میدان جریان برای دو حالت جدید مشابه با شرایط روتور اصلی تحلیل و دادههای بدست آمده در نمودارهای شکل ۱۴ و ۱۵ نشان داده شده است. برای بدست آوردن نقطه کاری (دور روتور، هد و توانهای جدید) از تقاطع نمودار توان بر حسب دور استفاده شده است. مقادیر دبی پمپ و توربین همان مقادیر قبلی در نظر گرفته شده است. با هندسه جدید روتورها، توان بر حسب دورهای مختلف محاسبه شدهاند. نقطه کاری جدید در دو حالت با تقاطع منحنیهای توان پمپ و توربین بر حسب دور بدست آمده است.

برای بررسی میزان صحت توان و سایر پارامترهای هیدرولیکی بدست آمده از این روش، بار دیگر در این دو سرعت بدست آمده، میدان جریان در توربین و پمپ برای روتورهای جدید تحلیل شدهاند که در شکل ۱۶ کانتور فشار استاتیکی در توربین برای روتورهای جدید و در جدول ۸ و ۹ مقادیر اختلاف فشار، توان تولیدی و مصرفی و راندمان و اختلاف آن با مقادیر بدست آمده از دو نمودار فوق آمده است.

همان طور که ملاحظه می شود، در شکل ۱۶ شرایط فشاری در خروج از توربوشارژر به دلیل ثابت نگداشته شدن فشار چندان تغییری نکرده است، اما فشار استاتیکی کل در ورودی به توربین (نازل ورودی که کانتور فشار آن به رنگ قرمز است) برای دو حالت مختلف فشار بالا و پایین (روتورهای جدید) نزدیک به ۱۰ بار تغییر پیدا کرده است.

۹- تست روتورهای جدید

برای تست توربوشارژر، از چیدمان تجهیزات موجود در سایت استفاده شده است (شکل ۱۶). پمپ فشار قوی تغذیه کننده توربوشارژر دارای اینورتر بوده است تا با استفاده از آن بتوان شرایط جدید را تنظیم نمود. برای اندازهگیری فشار در ورودی و خروجیهای توربوشارژر از فشارسنج استفاده شده است. برای اندازه گیری دبی در خط آب تولیدی و پساب از فلومتر مغناطیسی استفاده شده است تا دبی (و در نتیجه سرعت متوسط در هر مقطع) اندازهگیری شود. مشخصات تجهیزات اندازهگیری در جدول ۱۰ آمده است.

برای بدست آوردن فشار در ورودی و خروجیهای توربوشارژر بهتر است فشار سنجها بلافاصله بعد از فلنج اتصال نصب شوند. اما به صورت عملی در مواردی امکان پذیر نیست. در اینجا نیز چون هدف مقایسه عملکرد روتورهای جدید با روتور اصلی است، برای هر سه حالت موقعیت نصب فشارسنجها (که در شکل ۱۳ به طور شماتیک نشان داده شده است)، یکسان در نظر گرفته شده است. جدول ۶. حالت اول: روتور ۱ – حالت فشار بالا، فشار کل ورودی به ممبران ۶۸ بار (تغییر فشار پمپ توربوشارژر: ۲۸ بار، تغییر فشار توربین ۶۵ بار)

متغیرهای مربوط به پمپ	متغیرهای مربوط به توربین	واحد	متغیرهای معادله (۷) و (۸)
١/• ۵٨٣	1/•74		Ks
۱۷۷/۸	۱ • ۷/۳	m³/h	Q_2
٩١	٨٨	mm	d_2
۱٩/۰۴	17/92	mm	b_2
١۶	\ <i>\$</i> /Y	mm	b_2^*

Table 6. First mode: rotor 1 - high pressure mode, total pressure entering the membrane 68 bar (turbochargerpump pressure change: 28 bar, turbine pressure change 65 bar)

جدول ۷. حالت دوم: روتور ۲ - حالت فشار پایین، فشار کل ورودی به ممبران ۶۰ بار (تغییر فشار پمپ توربوشارژر: ۲۰ بار، تغییر فشار توربین ۵۷ بار)

 Table 7. Second mode: Rotor 2 - low pressure mode, the total inlet pressure to the membrane is 60 bar (turbocharger pump pressure change: 20 bar, turbine pressure change 57 bar)

متغیرهای مربوط به پمپ	متغیرهای مربوط به توربین	واحد	متغیرهای معادله (۷) و (۸)
۰/۸۹۴	۰/۹۵۸		K_s
۱ • ۲/۳	٨٨/١۵	m³/h	Q_2
۲ <i>۶/</i> ۹	۶/۲۸	mm	d_2
18/•1	1 <i>5</i> /VV	mm	b_2
Υ Υ / Δ	۱۹	mm	b_2^*

شکل ۱۴.منحنی توان بر حسب دور برای توربوشارژر با روتور جدید (حالت ۱ - فشار بالا)

Fig. 14. Power in terms of rotational speed for turbocharger with new rotor (mode 1)

شکل ۱۵. منحنی توان بر حسب دور برای توربوشارژر با روتور جدید (حالت ۲)

Fig. 15. Power in terms of rotational speed for turbocharger with new rotor (mode 2)

شکل ۱۶. کانتور فشار استاتیکی در بخش توربین مربوط به روتورهای جدید

Fig. 16. Static pressure contour in the turbine section of the new rotors

۱٦٣٠٠ دور بر دقيقه)	۱ در سرعت	برای روتور شماره	ولیکی یمپ و توربین	دوم: یارامترهای هیدر	جدول ۸. حالت
· · · · · · · · · · · · · · · · · · ·		1 11 11 0 1.			

خطا (٪) نتايج تحليل جريان پارامترهای هیدرولیکی روابط تشابه واحد تغيير فشار كل bar 21/4 ۲/۱ ۲۸ 14.10 kW توان خالص شافت ۰/۳ 141 ۷۹/۶ % راندمان (*η*_P) ۸۱/۰ ۰/۵ نتايج تحليل جريان خطا (٪) از روابط تشابه پارامترهای هیدرولیکی ۶۵/۳ bar تغيير فشار كل ٠/۴ ۶۵ kW توان خالص شافت 14.1. 141 ٠/٧ % ۱/۲ $\gamma \lambda / \gamma$ ٧٩/٧ راندمان (η_T)

Table 8. Pump and turbine hydraulic parameters for rotor number 1 at speed of 16300 rpm

جدول ۹. پارامترهای هیدرولیکی پمپ و توربین برای روتور شماره ۲ در سرعت ۱۲۹۰۰ دور بر دقیقه)

Table 9. Pump and turbine hydraulic parameters for rotor number 2 at a speed of 16900 rpm

خطا (٪)	نتايج تحليل جريان	روابط تشابه	واحد	پارامترهای هیدرولیکی
٣/٠	۲۰/۶	۲۸	bar	تغيير فشار کل
• /۶	11¢/V	141	kW	توان خالص شافت
۲/٣	۲ ۳/۳	۸۱/۰	%	راندمان (η₀)
خطا (./)	نتايج تحليل جريان	از روابط تشابه		پارامترهای هیدرولیکی
١/•	۵۷/۶	۵۷	bar	تغيير فشار كل
٠/۴	114/0	114	kW	توان خالص شافت
•/۵	٧٣/٠	۲۳/۴	%	راندمان (ητ)

جدول ۱۰. مشخصات تجهیزات اندازه گیری

محدوده اندازه گیری	دقت اندازه گیری	واحد	تجهیز اندازه گیری
۱ تا ۸۰	• /٢	bar	فشار سنجها در مقطع ورودی و خروجی پمپ توربوشارژر
۱ تا ۸۰	• /٢	bar	فشار سنج در مقطع ورودی توربین توربوشارژر
۰ تا ۵	• /)	bar	فشار سنج در مقطع خروجی توربین توربوشارژر
۲۰ تا ۲۰۰	١	m³/h	فلومتر نصب شده خط آب تولیدی از نوع الگترومگنت

Table 10. Specifications of measuring equipment

۱۲ شکل ۱۷. چیدمان تست توربوشارژر مطابق با شکل شماتیک شماره ۱۲ Fig. 17.Turbocharger test setup according to PFD shown in Fig. 12.

به دلیل اینکه روتور توربوشارژر داخل پوسته قرار دارد و از بیرون قابل رویت نیست، برای بدست آوردن دور روتور از آنالیز ارتعاشات و تحلیل تبدیل فوریه سریع^۱ استفاده شده است. برای این منظور سنسورهایی در سه راستا برای دریافت سیگنالهای ارتعاشات در دو طرف پوسته توربوشارژر نصب شدهاند. با توجه به حدود سرعت دورانی روتور، محدوده فرکانسی تا ۳۵۰/۰۰۰ د هرتز در نظر گرفته شده است.

1 FFT (Fast Fourier Transform)

۹– ۱– نتایج تست

در فرآیند تست برای تنظیم مقدار دبی آب خام و دبی آب تولیدی، مطابق با مقادیری که در تحلیل هیدرولیکی استفاده شدهاند از تنظیم دور پمپ فشار قوی قبل از توربوشارژر و نیز شیر خروجی آب پساب استفاده شده است. در جدول ۱۰ نتایج بدست آمده از تست، با دادههای بدست آمده از شبیهسازی برای اعتبارسنجی نتایج طراحی روتورهای جدید آمده است. برای بدست آوردن راندمان کل توربوشارژر از رابطه (۱۰) استفاده شده است. انرژی بر واحد زمان (توان) تولید شده توسط توربوشارژر همان توان هیدرولیکی پمپ

جدول ۱۱. نتایج دادههای تست در برای سه روتور اصلی، فشار بالا و فشار پایین

Table 11. The results of the test data for three main rotors, high pressure and low pressure

FR (%)	توان توليدى	توان ورودی به	fC	fB	fA	Eff	فشار ورودى	فشار خروجى	
LI((70)	توربوشارژر	پمپ فشار قوی	(cpm)	(cpm)	(cpm)	(%)	به توربين	از پمپ	(6 7 (
٣٠/٢	۱ • ۲/۲	$\mathbf{r} \boldsymbol{\cdot} \mathbf{a} / \mathbf{a}$	13198	1987.	8126	۶/۰۴	۶۳	۶۵	روتور اصلى
۳۲/۳	114/4	$r \cdot \Delta / \Delta$	18.48	1948.	8122	84/8	66	۶۸	روتور شماره ۱
۲۶/۳	٨١/٧	۲ • ۵/۵	۱۳۵۳۳	744	5117V	$\Delta \Lambda / \Lambda$	۵۸	۶.	روتور شماره ۲

$$Eff_{HP} = \left(P_{out_{HP}} - P_{In_{HP}}\right) \cdot \frac{Q_{P}}{HPIP} = \Delta P_{HP} \cdot \frac{Q_{P}}{HPIP}$$
(1Y)

که در آن $P_{out_{HP}}$ و $P_{out_{HP}}$ به ترتیب فشارهای کل در مقطع خروجی و ورودی پمپ فشار قوی می باشد. با جایگزینی روابط (۱۵) و (۱۷) در رابطه (۱۶)، رابطه (۱۸) برای میزان بازیافت انرژی بدست می آید:

$$ER(\%) = \frac{1}{HPIP} \frac{\Delta P_{turbo}Q_{p}}{1 + \frac{\Delta P_{turbo}}{\Delta P_{HP}}}.100 \tag{1A}$$

لازم به ذکر است در شرایط تست، فشار ورودی به پمپ فشار قوی، فشار خروجی از پمپ فشار قوی، فشار پساب و دبی آب خام به ترتیب ۳ بار، ۴۰ بار، خروجی از پمپ فشار قوی، فشار پساب و دبی آب خام به ترتیب ۳ بار، ۴۰ بار، ۲ بار ۲ بار و ۱۵۰ متر مکعب بر ساعت در همه حالتها ثابت نگهداشته شده است. fA و fB و fA در جدول ۱۱، فرکانسهای نقاط پیک در تحلیل ارتعاشی است که اولی دور پمپ فشار قوی، دومی دور توربوشارژر و سومی نیز فرکانس گذار پره است که با توجه به تعداد ۸ پره در پروانه پمپ و توربین، فرکانس تقریباً ۸ برابر دور روتور توربوشارژر است.

$$W_{Turbo} = \left(P_{out_P} - P_{inp}\right) Q_P = \Delta P_{Turbo} Q_P \tag{10}$$

بدست مىآيد.

مقدار بازیافت انرژی نیز بر اساس تعریف برابر با انرژی بازیافت شده توسط توربوشارژر به انرژی ورودی پمپ فشار قوی است در حالتی که توربوشارژر وجود نداشته باشد و فشار خروجی پمپ برابر با فشار خروجی توربوشارژر باشد. برای محاسبه این انرژی کافی است فرض کنیم در صورت نبود توربوشارژر، پمپ فشار قوی با همان راندمان چه مقدار انرژی لازم داشت تا فشار آب خام را به فشار نهایی بعد از توربوشارژر برساند. بر این اساس میتوان درصد بازیافت انرژی را به صورت رابطه زیر تعریف کرد:

$$ER(\%) = \frac{W_{Turbo}}{\frac{W_{Turbo}}{Eff_{HP}} + HPIP} \times 100$$
(18)

که در آن *HPIP* توان ورودی به پمپ فشار قوی (با وجود توربوشارژر) و *Eff*_{HP} راندمان پمپ فشار قوی است. لازم به ذکر است توان ورودی پمپ فشار قوی از آمپر مصرفی و ولتاژ بدست آمده در تست و اطلاعات موتور الکتریکی بدست می آید.

۹– ۲– تحلیل نتایج

۱) می توان از قوانین تشابه برای بدست آوردن روتور جدید استفاده کرد. نتایج بدست آمده نشان می دهد پارامترهای طراحی که از روشهای تشابه بدست آمدهاند با اختلاف قابل قبولی هم با نتایج شبیه سازی میدان جریان و هم با نتایج تست تجربی هم خوانی دارند و در مواردی است که امکان بهینه سازی کامپیوتری یا تست تجربی وجود ندارد می تواند روشی قابل اتکا باشد.

۲) همان طور که توضیح داده شد، برای طراحی روتور از تشابه هیدرولیکی استفاده شده است که فرض تئوری پشت روابط تشابه، ثابت باقی ماندن راندمان است که البته در عمل چنین اتفاقی نخواهد افتاد، زیرا اتلاف اصطکاکی در مجاری هیدرولیکی از قانون تشابه تبعیت نمی کند و ممکن است راندمان روتور جدید بیشتر یا کمتر از راندمان روتور اصلی باشد. اما در اینجا، کل هندسه توربوشارژر از نظر سایز به صورت یکنواخت تغییر نکرده است و تنها اندازه روتور تغییر داده شده است و سایر المانهای هیدرولیکی مانند دیفیوزر و جمع کننده ثابت ماندهاند. بنابراین راندمان نهایی قطعاً به نقطه متناظر خود وقتی همه اندازههای توربوشارژر تغییر میکند (با فرض تشابه اتلاف اصطكاكي) كه برابر با راندمان اوليه است، تبديل نمى شود. در اينجا علاوه بر اين مسأله كه تنها روتور تغيير اندازه داشته است، نقطه کاری توربوشارژر نیز متناظر با تبدیل نقاط قبل از رابطه تشابه نیست. زیرا دبی ثابت نگه داشته شده است تا درصد بازیافت تولید ثابت بماند. در نتيجه نقطه جديد به از نظر هيدروليكي مشابه با نقطه قبل از تغييرات روتور نیست و بنابراین راندمان قطعاً تغییر خواهد یافت و این تغییر بسته به منحنی عملكرد توربوشارژر مىتواند از راندمان اوليه بيشتر يا كمتر باشد. همانطور که از جدول ۱۰ ملاحظه می شود راندمان روتور دوم بالاتر و راندمان روتور سوم پایین تر از روتور اصلی میباشد که نشان میدهد در فشار بالا، جایگزینی روتور جدید علاوه بر صرفه جویی اقتصادی (بند ۳)، توان بازیافتی بیشتری را هم سبب می شود. طبیعتاً درصد بازیافت انرژی نیز متناسب با راندمان توربوشارژر تغییر خواهد کرد که در جدول نتایج نیز همین روند مشاهده می شود.

۳) استفاده از روتور یدکی مقرون به صرفهتر از تعویض توربوشارژر یا استفاده از موتورهای کمکی است که در مقدمه توضیح داده شده است. هزینه تمام شده روتور توربوشارژر نسبت به یک توربوشارژر کامل حدود ۲۰ تا ۲۵ درصد است، ضمن اینکه زمان ساخت، و هزینه نصب و راه اندازی نیز به همین نسبت پایین تر خواهد آمد. این هزینهها حتی با در نظر گرفتن کاهش راندمان در حالتی که از روتور ۲ استفاده شود، مقرون به صرفه تر از جایگزینی توربوشارژر کامل خواهد بود.

۴) معمولاً روتور یدکی به همراه توربوشارژر خرید می شود که بهتر است با توجه به شرایط طراحی، تغییرات فصلی، فرسودگی ممبران □ها و تغییرات در شوری آب خام، که باعث تغییر در نقطه کاری می شوند، در همان ابتدا پیش بینی شده و روتورهای مناسب طراحی و به عنوان یدک برای این شرایط رزرو گردند.

۵) طول عمر هرکدام از روتورها به دلیل آنکه برای مدت کمتری از طول سال در مدار است (اگر تغییرات هیدرولیکی به خاطر شرایط فصلی باشد)، بیش تر خواهد شد.

۶) در این مقاله هدف اصلی مقایسه سه حالت مختلف با یکدیگر و استفاده از یک معیار و یک نوع داده برای محاسبه مقدار انرژی بازیافتی توسط توربوشارژر بوده است و نصب تجهیزات اندازهگیری در موقعیتهای مشابه در هر سه حالت این امکان را برای مقایسه دادهها میسر نموده است.

۹– ۳– جمع بندی

با توجه به نتایج بدست آمده از روابط تشابه هیدرولیکی، تحلیل میدان جریان و دادههای تست میتوان به این جمع بندی رسید که برای باز طراحی روتور توربوشارژر هیدرولیکی میتوان از جایگزینی روتور جدید با روتور موجود برای رسیدن به نقطه کاری جدید کمک گرفت. این روش در برخی موارد (وقتی به فشار بالا نیاز است حتی به راندمان بالاتر نیز منجر میشود). این روش علاوه بر صرفه اقتصادی، باعث طول عمر بیشتر توربوشارژر (به دلیل استفاده از دو یا سه روتور در طول سال) میگردد.

پيوست

$$\nabla \vec{V} = 0$$

معادله مومنتوم برای سیال تراکم ناپذیر:

$$\rho \frac{\partial \vec{V}}{\partial t} + \rho (\vec{V} \cdot \nabla) \vec{V} = -\nabla \mathbf{p} + \nabla^2 \vec{V} + \rho f \tag{(v_{\varphi})}$$

که در رابطه بالا $ec{V}$ بردار سرعتاست. f برای مختصات دوار همانند یک نیروی حجمی عمل میکند و در واقع همان نیروی کوریولیس است و مطابق با رابطه زیر بدست می آید:

$$f = 2\rho \vec{V} \times \Omega_z \tag{(v_{\psi})}$$

در این رابطه
$$\Omega_z$$
 سرعت دورانی روتور حول محور z است.

$$\mu_T = \frac{\rho a_1 K}{\max\left(a_1 \omega, SF_2\right)} \tag{(f_{\psi})}$$

$$\rho \frac{\partial K}{\partial t} + \rho (\vec{V} \cdot \nabla) K = P_k - \beta^* K \omega + \nabla^2 \Big[\left(\mu + \sigma_k \mu_T \right) K \Big]$$

$$(\Delta_{\psi})$$

معادله نرخ اتلاف انرژي توربولانسي:

$$\rho \frac{\partial \omega}{\partial t} + \rho \overline{(V.\nabla)}\omega = \alpha S^2 - \beta \omega^2 + \nabla^2 \left[\left(\mu + \sigma_k \mu_T \right) \omega \right] + 2 \left(1 - F_1 \right) \sigma_{\omega^2} \frac{1}{\omega} (\nabla K) (\nabla \omega)$$

$$(\mathcal{F}_{\psi})$$

، $F_1 \sigma_k \sigma_{\omega 2}$ که در روابط بالا K انرژی جنبشی توربولانسی، ϖ نرخ اتلاف انرژی توربولانسی، S مقدار ورتیسیته جریان است. مقادیر $F_1 \sigma_k \sigma_{\omega 2}$ مقادیری هستند که بر اساس مدل انتقال تنش برشی و بر حسب متغیرهای جریان معادلات جداگانه ای دارند که به عنوان نمونه میتوان به α مرجع [۱۸] مراجعه نمایید.

الگوریتم حل برای معادلات فشار الگوریتم سیمپل C، روش گسسته سازی معادلات مرتبه دوم، و نرم افزار حل میدان جریان انسیس سی اف ایکس و دقت همگرایی نتایج تا ۰/۰۰۰۰۵ در نظر گرفته شده است.

منابع

- [1] A. Ali, R.A. Tufa, F. Macedonio, E. Curcio, E. Drioli, Membrane technology in renewable-energy-driven desalination, Renewable and Sustainable Energy Reviews, 81 (2018) 1-21.
- [2] D. Zarzo, D. Prats, Desalination and energy consumption.What can we expect in the near future?, Desalination, 427 (2018) 1-9.
- [3] T. Manth, M. Gabor, E. Oklejas Jr, Minimizing RO energy consumption under variable conditions of operation, Desalination, 157(1-3) (2003) 9-21.
- [4] V.G. Gude, Energy consumption and recovery in reverse osmosis, Desalination and water treatment, 36(1-3) (2011) 239-260.
- [5] C.R. Bartels, R. Franks, W. Bates, Design advantages for SWRO using advanced membrane technology, IDA Journal of Desalination and Water Reuse, 2(4) (2010) 21-25.
- [6] A.E. Sani, Design and synchronizing of Pelton turbine with centrifugal pump in RO package, Energy, 172 (2019) 787-793.
- [7] T.A. El-Sayed, A.A.A. Fatah, Performance of hydraulic turbocharger integrated with hydraulic energy management in SWRO desalination plants, Desalination, 379 (2016) 85-92.
- [8] J. Lozier, E. Oklejas, M. Silbernagel, The hydraulic turbochargerTM: A new type of device for the reduction of feed pump energy consumption in reverse osmosis systems, Desalination, 75 (1989) 71-83.
- [9] A. Farooque, A. Jamaluddin, A. Al-Reweli, P. Jalaluddin, S. Al-Marwani, A. Al-Mobayed, A. Qasim, Parametric analyses of energy consumption and losses in SWCC SWRO plants utilizing energy recovery devices, Desalination, 219(1-3) (2008) 137-159.
- [10] M. Wilf, C. Bartels, Optimization of seawater RO systems design, Desalination, 173(1) (2005) 1-12.
- [11] C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination, 216(1-3) (2007) 1-76.

۱۰ - فهرست علائم و اختصارات

علائم انگلیسی

${ m m}^2$ مساحت،	A
عرض خروجی پر	b
قطر پروانەھا، m	D
درصد بازيافت انر	ER
نيرو، N	F

- f فرکانس، Hz
- f نيروى حجمى، N
 - m هد، *H*
 - HP فشار قوى
- HPIP توان ورودی به پمپ فشار قوی، WW

وانهها، mm

m

ژى، %

- K ضريب لصطكاك، ضريب تشابه
 - bar فشار، P
 - ${
 m m}^3/{
 m h}$ دبی جریان، Q
 - Re عدد رينولدز
 - *R* شعاع، mm
 - mm لقى شعاعى يا محورى، S
 - m/s سرعت، V
 - J کار، انرژی، W
 - *Z* ارتفاع، m

علائم يونانى

- ρ چگالی، kg/m³
 - η راندمان، %
- rad/s سرعت دورانی، Ω
- ω نرخ انرژی توربولانس

زيرنويس

سيال	f

- i ورودی o خروجی
 - يمپ P
- T توربين

- [15] A.T. Bouma, J. Swaminathan, J.H. Lienhard, Metrics matter: accurately defining energy efficiency in desalination, Journal of Heat Transfer, 142(12) (2020) 122101.
- [16] A.J. Schunke, G.A. Hernandez Herrera, L. Padhye, T.-A. Berry, Energy recovery in SWRO desalination: current status and new possibilities, Frontiers in Sustainable Cities, 2 (2020) 9.
- [17] J.F. Gülich, Pump hydraulics and physical concepts, Berlin: Springer, 2010, 69–144.
- [18] M. Lesieur, Turbulence in Fluids, Springer, 2008.

- [12] M.J. Guirguis, Energy recovery devices in seawater reverse osmosis desalination plants with emphasis on efficiency and economical analysis of isobaric versus centrifugal devices, University of South Florida, 2011.
- [13] C.F. Wan, T.-S. Chung, Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes, Applied energy, 162 (2016) 687-698.
- [14] S.A. Urrea, F.D. Reyes, B.P. Suárez, J.A. de la Fuente Bencomo, Technical review, evaluation and efficiency of energy recovery devices installed in the Canary Islands desalination plants, Desalination, 450 (2019) 54-63.

چگونه به این مقاله ارجاع دهیم A. Eskandari Sani, Redesign of energy recovery device to keep the production recovery constant, Amirkabir J. Mech Eng., 56(5) (2024) 651-678.

DOI: 10.22060/mej.2024.22968.7705

بی موجعه محمد ا