[1] I. Benedetti, M.H. Aliabadi, A three-dimensional cohesive-frictional grain-boundary micromechanical model for intergranular degradation and failure in polycrystalline materials, Computer Methods in Applied Mechanics and Engineering, 265 (2013) 36-62.
[2] M. Herbig, A. King, P. Reischig, H. Proudhon, E.M. Lauridsen, J. Marrow, J.-Y. Buffière, W. Ludwig, 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography, Acta Materialia, 59(2) (2011) 590-601.
[3] J. Liang, Z. Zhao, B. Guo, B. Sun, D. Tang, Enhancing plasticity by increasing tempered martensite in ultra-strong ferrite-martensite dual-phase steel, Materials Research Express, 6(2) (2018) 026502.
[4] M. Maleki, H. Mirzadeh, M. Zamani, Effect of Intercritical Annealing Time at Pearlite Dissolution Finish Temperature (Ac1f) on Mechanical Properties of Low-Carbon Dual-Phase Steel, Journal of Materials Engineering and Performance, 28(4) (2019) 2178-2183.
[5] P. Lapouge, J. Dirrenberger, F. Coste, M. Schneider, Laser heat treatment of martensitic steel and dual-phase steel with high martensite content, Materials Science and Engineering: A, 752 (2019) 128-135.
[6] B. Anbarlooie, M. Hosseini, H. Hosseini-Toudeshky, Micromechanical Failure Analyses and Tensile Behavior of Dual Phase Steel Using Two and Three-Dimensional Representative Volume Elements, Mech. Eng, 51(3) (2019) 1-3 (In Persian).
[7] H. Hosseini-Toudeshky, P. Parandavar, B. Anbarlooie, Stress–strain prediction of dual phase steels using 3D RVEs considering both interphase hardness variation and interface debonding at grain boundaries, Archive of Applied Mechanics, 92(1) (2022) 255-270.
[8] M. Paggi, P. Wriggers, Stiffness and strength of hierarchical polycrystalline materials with imperfect interfaces, Journal of the Mechanics and Physics of Solids, 60(4) (2012) 557-572.
[9] N. Sukumar, D.J. Srolovitz, T.J. Baker, J.H. Prévost, Brittle fracture in polycrystalline microstructures with the extended finite element method, International Journal for Numerical Methods in Engineering, 56(14) (2003) 2015-2037.
[10] G.K. Sfantos, M.H. Aliabadi, Multi-scale boundary element modelling of material degradation and fracture, Computer Methods in Applied Mechanics and Engineering, 196(7) (2007) 1310-1329.
[11] G.K. Sfantos, M.H. Aliabadi, A boundary cohesive grain element formulation for modelling intergranular microfracture in polycrystalline brittle materials, International Journal for Numerical Methods in Engineering, 69(8) (2007) 1590-1626.
[12] Y. Liu, D. Fan, S.P. Bhat, A. Srivastava, Ductile fracture of dual-phase steel sheets under bending, International Journal of Plasticity, 125 (2020) 80-96.
[13] S.K. Basantia, P.K. Prusty, D. Das, N. Khutia, Micro-scale simulation of nanoindentation characteristics in dual-phase steel, Materials Today: Proceedings, 33 (2020) 5055-5060.
[14] H. Li, Z. Kong, J. Zhang, N. Kong, Numerical Study on the Effects of Chemical Composition and Microstructure Inconsistencies on Mechanical Properties of Dual-Phase Steel, steel research international, 90(1) (2019) 1800259.
[15] D. De Meo, E. Oterkus, Finite element implementation of a peridynamic pitting corrosion damage model, Ocean Engineering, 135 (2017) 76-83.
[16] E. Madenci, A. Barut, N. Phan, Peridynamic unit cell homogenization for thermoelastic properties of heterogenous microstructures with defects, Composite Structures, 188 (2018) 104-115.
[17] S. Gur, M.R. Sadat, G.N. Frantziskonis, S. Bringuier, L. Zhang, K. Muralidharan, The effect of grain-size on fracture of polycrystalline silicon carbide: A multiscale analysis using a molecular dynamics-peridynamics framework, Computational Materials Science, 159 (2019) 341-348.
[18] J. Zhao, Z. Chen, J. Mehrmashhadi, F. Bobaru, A stochastic multiscale peridynamic model for corrosion-induced fracture in reinforced concrete, Engineering Fracture Mechanics, 229 (2020) 106969.
[19] A.A. Griffith, VI. The phenomena of rupture and flow in solids, Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 221(582-593) (1921) 163-198.
[20] S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48(1) (2000) 175-209.
[21] E. Celik, I. Guven, E. Madenci, Simulations of nanowire bend tests for extracting mechanical properties, Theoretical and Applied Fracture Mechanics, 55(3) (2011) 185-191.
[22] E. Madenci, E. Oterkus, Peridynamic theory, in: Peridynamic theory and its applications, Springer, 2013, pp. 19-43.
[23] Y.K. Galadima, S. Oterkus, E. Oterkus, I. Amin, A.-H. El-Aassar, H. Shawky, Effect of phase contrast and inclusion shape on the effective response of viscoelastic composites using peridynamic computational homogenization theory, Mechanics of Advanced Materials and Structures, 31(1) (2024) 155-163.
[24] C. Mitts, E. C. Aifantis, E. Madenci, Peridynamics with strain gradient for modeling carbon nanotube under static and dynamic loading, Mechanics of Advanced Materials and Structures, 31(1) (2024) 147-154.
[25] T. Vaitkunas, P. Griskevicius, A. Adumitroaie, Peridynamic material model calibration based on digital image correlation experimental measurements, Mechanics of Advanced Materials and Structures, 30(20) (2023) 4132-4145.
[26] X.-P. Zhou, Y.-T. Wang, State-of-the-art review on the progressive failure characteristics of geomaterials in peridynamic theory, Journal of Engineering Mechanics, 147(1) (2021) 03120001.
[27] B. Kilic, E. Madenci, An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory, Theoretical and Applied Fracture Mechanics, 53(3) (2010) 194-204.
[28] B. Anbarlooie, H. Hosseini-Toudeshky, Damage mechanisms analyses in DP steels using SEM images, FEM, and nonlocal peridynamics methods, Mechanics of Advanced Materials and Structures, (2024) 1-15.
[29] A. Alaie, J. Kadkhodapour, S.Z. Rad, M.A. Asadabad, S. Schmauder, Formation and coalescence of strain localized regions in ferrite phase of DP600 steels under uniaxial tensile deformation, Materials Science and Engineering: A, 623 (2015) 133-144.