مطالعه عددی حدود شعله‌وری احتراق پیش آمیخته مخلوط آمونیاک-متان در یک مشعل محیط متخلخل

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

چکیده

هدف از مطالعه حاضر بررسی عددی اثر پارامترهای نسبت هم‌ارزی، سرعت ورودی و نسبت آمونیاک به متان در سوخت ورودی، بر حدود شعله‌وری مشعل و توزیع دمای شعله مخلوط آمونیاک- متان در یک مشعل محیط متخلخل است. بدین منظور از روش حجم محدود و به‌صورت عددی با استفاده از نرم‌افزار فلوئنت 22 و یک سینتیک شیمیایی شامل 69 گونه و 389 واکنش استفاده‌شده است. نتایج نشان داد، با افزایش نسبت هم‌ارزی تا 1، بیشینه دمای فاز گاز و جامد افزایش و بعدازآن کاهش می‌یابد.  همچنین در سرعت ورودی مختلف،با افزایش نسبت هم ارزی تا 1/1، موقعیت ناحیه شعله به سمت بالادست مشعل حرکت می‌کند و بعدازآن ناحیه شعله به سمت پایین‌دست حرکت می‌کند. همچنین مشاهده شد با افزایش نسبت هم‌ارزی از 0/7 به 1، حداقل سرعت ورودی برای حد پایین حدود شعله‌وری به ترتیب از 0/1 به 0/163 متر بر ثانیه یعنی معادل 57% افزایش و حداکثر سرعت ورودی برای حد بالای حدود شعله‌وری به ترتیب از 0/14 به 0/244 متر بر ثانیه یعنی معادل 63% افزایش می‌یابد. در نسبت هم‌ارزی ثابت با افزایش درصد آمونیاک، دمای بیشینه فاز گاز و جامد کاهش می‌یابد. همچنین با تغییر هم‌زمان نسبت هم‌ارزی و درصد آمونیاک، بیشترین و کمترین بازه استفاده از آمونیاک در نسبت هم‌ارزی 1 بین 100%-10% و نسبت هم‌ارزی 1/4 بین 30%-10% مشاهده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical study of flammability limits of premixed combustion of ammonia-methane mixture in a porous media burner

نویسندگان [English]

  • Mehdi Sepahvand
  • Seyed Abdolmehdi Hashemi
  • Ali Arefmanesh
Department of Mechanical Engineering, University of Kashan, Kashan, Iran
چکیده [English]

This study numerically examines how equivalence ratio, inlet velocity, and ammonia-to-methane ratio in fuel impact flammability limits and flame temperature distribution in an ammonia-methane mixture within a porous burner. The research employed the finite volume method in Fluent 22 software with a chemical kinetic model featuring 69 species and 389 reactions. Furthermore, as the equivalence ratio increases from 0.7 to 1, the minimum inlet velocity for the lower flammability limit rises by 57% (from 0.1 to 0.163 m/s), and the maximum inlet velocity for the upper flammability limit rises by 63% (from 0.14 to 0.244 m/s). For a fixed equivalence ratio, increasing ammonia percentage lowers peak gas and solid temperatures. Additionally, the widest ammonia range occurs at an equivalence ratio of 1 (10% to 100%), whereas at an equivalence ratio of 1.4, the range narrows to 10%–30%.

کلیدواژه‌ها [English]

  • Porous Burner
  • Ammonia Fuel
  • Flame Stability
  • premixed Combustion
  • Equivalence Ratio
[1] W. S. Chai, Y. Bao, P. Jin, G. Tang, L. Zhou, A review on ammonia, ammonia-hydrogen and ammonia-methane fuels, Renewable and Sustainable Energy Reviews, 147 (2021) 11254.
[2] A. Yapicioglu, I. Dincer, A review on clean ammonia as a potential fuel for power generators, Renewable and sustainable energy reviews, 103 (2019) 96-108.
[3] J. Shi, Y. Liu, M. Mao, J. Lv. Y. Wang. F. He, Experimental and numerical studies on the effect of packed bed length on CO and NOx emissions in a plane-parallel porous combustor, Energy, 181 (2019) 250-263.
[4] C. S. Mørch, A Bjerre, M. P. Gøttrup, S. C. Sorenson, J. Schramm, Ammonia/hydrogen mixtures in an SI-engine: Engine performance and analysis of a proposed fuel system, Fuel, 90 (2011) 854−864.
[5] A. Valera-Medina, Morris, S. Runyon, J. Pugh, D. G. Marsh, R. Beasley, P. Hughes, Ammonia, methane and hydrogen for gas turbines, Energy Procedia, 75 (2015) 118−123.
[6] O. Kurata, N. Iki, T. Matsunuma, T. Inoue, T. Tsujimura, H. Furutani, H. Kobayashi, A. Hayakawa, Performances and emission characteristics of NH3-air and NH3-CH4-air combustion gas-turbine power generations, Proc. Combust. Inst, 36 (2001) 3351−3359.
[7] A. S. Singh, Y. Vijrumbana, V. M. Reddy, Experimental and computational (Chemical Kinetic + CFD) analyses of Self-Recuperative annular tubular porous burner for NH3/CH4 -air NonPremixed combustion. Chemical Engineering Journal, 481(2024) 148439.
[8] M. Bastani, S. Tabejamaat, H. Ashini, Experimental study of Ammonia-Methane mixture combustion in the micro gas turbine combustor. Fuel and Combustion, 3(2021) 120-138(in persian).
[9] Z. Tian, Y. Li, L. Zhang, P. Glarborg, F.  Qi, An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. Combust, Flame, 156 (2009) 1413−1426.
[10] E. C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames. Combust, Flame, 187 (2018) 185−198.
[11] H. Xiao, A. Valera-Medina, P. J. Bowen, Study on premixed combustion characteristics of co-firing ammonia/methane fuels. Energy, 140 (2017) 125−135.
[12] C. F. Ramos, R. C. Rocha, P.  M.  R. Oliveira, M. Costa, X. S. Bai, Experimental and kinetic modelling investigation on NO, CO and NH3 emissions from NH3/CH4/air premixed flames, Fuel, 254 (2019) 115693.
[13] H. Nozari, O. Tuncer, A. Karabeyoglu, Evaluation of ammonia-hydrogen-air combustion in SiC porous medium based burner, Energy Procedia, 142 (2017) 674−679.
[14] C. Brackmann, V. A. Alekseev, B. Zhou, E. Nordström, P. E. Bengtsson, Z. Li, M. Aldén, A. A. Konnov, Structure of premixed ammonia + air flames at atmospheric pressure: Laser diagnostics and kinetic modeling, Combustion and Flame, 163 (2016) 370−38.
[15] G. Vignat, T. Zirwes, E. R. Toro, K. Younes, E. Boigne, P. Muhunthan, L. Simitz, D. Trimis, M. Ihme, Experimental and numerical investigation of flame stabilization and pollutant formation in matrix stabilized ammonia-hydrogen combustion, Combustion and Flame, 250(2023) 112642.
[16] D. Chen, J. Li, X. Li, L. Deng, Z. He, H. Huang, N. Kobayashi, Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner, Energy, 263(2023) 125613.
[17] G. Wang, L. Huang, H. Tu, H. Zhou, X. Chen, J. Xu, Stable lean co-combustion of ammonia/methane with air in a porous burner, Applied Thermal Engineering, 248(2024) 123092.
[18] C. Rodolfo, C. Rocha, Filipe Ramos, Mário Costa, X. S. Bai. Combustion of NH3/CH4/Air and NH3/H2/Air Mixtures in a Porous Burner: Experiments and Kinetic Modeling, Energy & Fuels, 33(12) (2019) 12767-12780.
[19] S. M. Hashemi, P. Wang, C. Mao, K. Cheng, Y. Sun, Z. Yin, Combustion Performance of the Premixed Ammonia-Hydrogen-Air Flame in Porous Burner, Combustion Science and Technology,196 (2023) 4121-4138.
[20] S. M. Hashemi, P. Wang, C. Mao, K. Cheng, Y. Sun, Z. Yin, Experimental study on the pollutant emissions of premixed ammonia/methane/air flame within porous burner, Proceedings of the Institution of Mechanical Engineers, 238(2024) 4139-4136.
[21] R. C.  Catapan, A. A. M. Oliveira, M. Costa, Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner, Experimental Thermal and Fluid Science, 35 (2011) 172-179.
[22] S. Ergun, Fluid now through packed columns, Chemical Engineering Progress, 48(2) (1952) 89-94.
[23] D. A. Nield, A. Bejan, Convection in Porous Media, Springer, 2006.
[24] X. Fu, R. Vistanka, J. P. Gore, Measurement and correlation of volumetric heat transfer coefficient of cellular ceramics, Experimental Thermal and Fluid Science, 17 (1998) 285- 293.
[25] X. Fu, Modeling of A Submerged Flame Porous Burner/Radiant Heater, Purdue University, 1997.   
[26] M. Farzaneh, M. Shafiey, R. Ebrahimi, M. Shams, Numerical investigation of premixed combustion in porous burner with integrated heat exchanger, Heat and Mass Transfer, 48 (2012) 1273-1283.
[27] S. Gauthier, A. Nicolle, D. Baillis, Investigation of flame structure and nitrogen oxides formation in lean porous premixed combustion of natural gas/ hydrogen blends, International Journal of Hydrogen Energy, 33 (2008) 4893- 4905.
[28] L. Xu, Y. Chang, M. Treacy, Y. Zhou, M. Jia, X. S. Bai, A skeletal chemical kinetic mechanism for ammonia/n-heptane combustion, Fuel, 331 (2023) 125830.