[1] R. Russo, V. Phalke, D. Croizet, M. Ziane, S. Forest, F.A.G. Mata, H.-J. Chang, A. Roos, Regularization of shear banding and prediction of size effects in manufacturing operations: A micromorphic plasticity explicit scheme, International Journal of Material Forming, 15(3) (2022) 21.
[2] S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48(1) (2000) 175-209.
[3] S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic States and Constitutive Modeling, Journal of Elasticity, 88(2) (2007) 151-184.
[4] F. Han, G. Lubineau, Y. Azdoud, Adaptive coupling between damage mechanics and peridynamics: A route for objective simulation of material degradation up to complete failure, Journal of the Mechanics and Physics of Solids, 94 (2016) 453-472.
[5] F. Bobaru, Y.D. Ha, ADAPTIVE REFINEMENT AND MULTISCALE MODELING IN 2D PERIDYNAMICS, International Journal for Multiscale Computational Engineering, 9(6) (2011).
[6] D. Dipasquale, M. Zaccariotto, U. Galvanetto, D. Dipasquale, M. Zaccariotto, U. Galvanetto, Crack propagation with adaptive grid refinement in 2D peridynamics, International Journal of Fracture 2014 190:1, 190(1) (2014-10-14).
[7] F. Mousavi, S. Jafarzadeh, F. Bobaru, An ordinary state-based peridynamic elastoplastic 2D model consistent with J2 plasticity, International Journal of Solids and Structures, 229 (2021) 111146-111146.
[8] L. Strömberg, M. Ristinmaa, FE-formulation of a nonlocal plasticity theory, Computer Methods in Applied Mechanics and Engineering, 136(1-2) (1996) 127-144.
[9] F. Han, G. Lubineau, Y. Azdoud, A. Askari, A morphing approach to couple state-based peridynamics with classical continuum mechanics, Computer Methods in Applied Mechanics and Engineering, 301 (2016) 336-358.
[10] Y. Azdoud, F. Han, G. Lubineau, A Morphing framework to couple non-local and local anisotropic continua, International Journal of Solids and Structures, 50(9) (2013) 1332-1341.
[11] G. Lubineau, Y. Azdoud, F. Han, C. Rey, A. Askari, A morphing strategy to couple non-local to local continuum mechanics, Journal of the Mechanics and Physics of Solids, 60(6) (2012) 1088-1102.
[12] M. D'Elia, M. Perego, P. Bochev, D. Littlewood, A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions, Computers & Mathematics with Applications, 71(11) (2016) 2218-2230.
[13] M. D'Elia, M. Gunzburger, Optimal Distributed Control of Nonlocal Steady Diffusion Problems, SIAM Journal on Control and Optimization, 52(1) (2014) 243-273.
[14] F. Han, G. Lubineau, Coupling of nonlocal and local continuum models by the Arlequin approach, International Journal for Numerical Methods in Engineering, 89(6) (2012) 671-685.
[15] S. Prudhomme, H. Ben Dhia, P.T. Bauman, N. Elkhodja, J.T. Oden, Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method, Computer Methods in Applied Mechanics and Engineering, 197(41-42) (2008) 3399-3409.
[16] E. Madenci, P. Roy, D. Behera, Peridynamic Modeling of Elastoplastic Deformation, Advances in Peridynamics, (2022) 185-199.
[17] D. Sulsky, Z. Chen, H.L. Schreyer, A particle method for history-dependent materials, Computer Methods in Applied Mechanics and Engineering, 118(1-2) (1994) 179-196.
[18] D. Sulsky, S.J. Zhou, H.L. Schreyer, Application of a particle-in-cell method to solid mechanics, Computer Physics Communications, 87(1-2) (1995) 236-252.
[19] E. Madenci, S. Oterkus, Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening, Journal of the Mechanics and Physics of Solids, 86 (2016) 192-219.
[20] Z. Zeng, Y.C. Su, X. Zhang, Z. Chen, Combining peridynamics and generalized interpolation material point method via volume modification for simulating transient responses, Computational Particle Mechanics, 8(2) (2021) 337-347.
[21] H. Bagherzadeh, O.R. Barani, Coupling the material point method and Peridynamics via the force partitioning and concurrent coupling schemes, Computational Particle Mechanics, 11(1) (2024) 55-71.
[22] J. Burghardt, R. Brannon, J. Guilkey, A nonlocal plasticity formulation for the material point method, Computer Methods in Applied Mechanics and Engineering, 225-228 (2012) 55-64.
[23] M. Steffen, P.C. Wallstedt, J.E. Guilkey, R.M. Kirby, M. Berzins, Examination and Analysis of Implementation Choices within the Material Point Method (MPM), Computer Modeling in Engineering & Sciences, 31(2) (1970) 107-128.
[24] Q.V. Le, W.K. Chan, J. Schwartz, A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids, International Journal for Numerical Methods in Engineering, 98(8) (2014) 547-561.
[25] J.A. Mitchell, A nonlocal, ordinary, state-based plasticity model for peridynamics, Sandia National Laboratories, Albuquerque, NM, and Livermore, CA (United States), 2011.
[26] Z. Zeng, H. Zhang, X. Zhang, Y. Liu, Z. Chen, An adaptive peridynamics material point method for dynamic fracture problem, Computer Methods in Applied Mechanics and Engineering, 393 (2022) 114786-114786.
[27] W. Liu, J.W. Hong, A coupling approach of discretized peridynamics with finite element method, Computer Methods in Applied Mechanics and Engineering, 245-246 (2012) 163-175.
[28] H. Hooputra, H. Gese, H. Dell, H. Werner, A comprehensive failure model for crashworthiness simulation of aluminium extrusions, International Journal of Crashworthiness, 9(5) (2004) 449-464.
[29] D.J. Littlewood, Roadmap for Software Implementation, Handbook of Peridynamic Modeling, (October) (2021) 147-178.
[30] I.N. Giannakeas, T.K. Papathanasiou, H. Bahai, Simulation of thermal shock cracking in ceramics using bond-based peridynamics and FEM, Journal of the European Ceramic Society, 38(8) (2018) 3037-3048.
[31] H.C. Ho, K.F. Chung, X. Liu, M. Xiao, D.A. Nethercot, Modelling tensile tests on high strength S690 steel materials undergoing large deformations, Engineering Structures, 192(April) (2019) 305-322.
[32] S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers & Structures, 83(17) (2005) 1526-1535.
[33] R. Ni, X. Zhang, A precise critical time step formula for the explicit material point method, International Journal for Numerical Methods in Engineering, 121(22) (2020) 4989-5016.
[34] B.C. Simonsen, R. Törnqvist, Experimental and numerical modelling of ductile crack propagation in large-scale shell structures, Marine Structures, 17(1) (2004) 1-27.