بررسی اثرات بارگذاری هم‌زمان متقارن ضربه‌ای روی ساندویچ‌پنل لانه زنبوری با ساختارهای سلولی مختلف هسته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

2 دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران.

چکیده

در طراحی سازه‌های مختلف، مهم‌است که آن‌ها توانایی تحمل بارهای مختلف را داشته باشند. دراین ‌راستا، ساندویچ‌پنل‌ها به‌دلیل سبکی و جذب بار مطلوب، مورد توجه قرار گرفته‌اند. با توجه به‌این‌که ضربه ناشی از انفجار می‌تواند بر سلامت انسان تأثیر بگذارد، بررسی رفتار ساندویچ‌پنل‌ها تحت این بارگذاری‌‌ مهم است. در این تحقیق، ساندویچ‌پنل‌های لانه‌زنبوری با سلول‌های هسته متفاوت، تحت بارگذاری‌های انفجاری متقارن هم‌زمان قرارگرفته و تأثیر تغییر وزن و فاصله‌ی بارها، بر تغییرشکل ارزیابی شده است. باتوجه به‌هزینه بالای انجام آزمایش‌های تجربی، از روش عددی توسط نرم‌افزار المان محدود ال‌اس‌داینا استفاده شد. پس از طراحی و اعتبارسنجی با داده‌های تجربی موجود در ادبیات، مقادیر 0/5، 1 و 2کیلوگرم تی‌ان‌تی در یک و دونقطه(0/25×2، 0/5×2 و 1×2کیلوگرم) در فاصله 10سانتی‌متری ساندویچ‌پنل با ساختارهای سلولی هسته مربع، دایره‌ و هشت‌ضلعی منفجر شده و تغییرشکل آن‌ها ارزیابی شد. به‌منظور بررسی تأثیر فاصله بارهای انفجاری بر تغییرشکل در بارگذاری دونقطه‌ای، این بارها در فواصل 8، 10 و 12سانتی‌متری از یکدیگر قرار داده شده و میزان تغییرشکل ساندویچ‌پنل‌ها با سلول‌های مختلف، با انفجار تک‌نقطه‌ای مقایسه شده‌است. برطبق مطالعات انجام شده، بهترین ساختار برای جذب بارهای انفجاری، هشت‌ضلعی ارزیابی شده، به‌گونه‌ای‌که به‌ترتیب در انفجارهای تک‌نقطه‌ای و دونقطه‌ای، در بهترین حالت 14/1 و 12/2میلی‌متر، جابجایی کمتر داشته است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effects of simultaneous symmetrical impulsive loading on honeycomb sandwich panels with different core topologies

نویسندگان [English]

  • Mehdi Niajalili 1
  • Majid Alitavoli 2
  • Reza Ansari 2
  • Mojtaba Haghgoo 2
1 Department of Mechanical Engineering, University of Guilan, Rasht, Iran.
2 Department of Mechanical Engineering, University of Guilan, Rasht, Iran.
چکیده [English]

In the design of structures, it is important that they have the ability to withstand loads. Sandwich panels have received attention due to their lightweight and good absorption. In this research, honeycomb sandwich panels with different core topologies were subjected to simultaneous impulsive loading, and the effect of the amount of loads and the distance between charges on the deformation was evaluated. Due to the high cost of conducting the experimental test, the finite element software has been employed. After validating with the experimental data, the values ​​of 0.5, 1, and 2 kg of selected charge in single and two-point loading at the sandwich panels with square, circular, and octagonal core topologies have been affected and the deformation of sandwich panels has been evaluated. In order to investigate the effect of the distance of charges from each other on the deformation, these are placed at 8, 10, and 12 cm from each other. Then, the amount of deflection of sandwich panels with single-point loading has been compared. According to the investigations, the best topology for absorbing loads is octagonal, so it has less displacement in single and two-point loading in the best case of 14.1 and 12.2 mm, respectively.

کلیدواژه‌ها [English]

  • Deflection
  • core topologies
  • finite element software
  • sandwich panel
  • simultaneous impulsive loading
[1] K.P. Dharmasena, H.N. Wadley, Z. Xue, J.W. Hutchinson, Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading, International Journal of Impact Engineering, 35(9) (2008) 1063-1074.
[2] R. Sawant, M. Patel, S. Patel, Numerical analysis of honeycomb sandwich panels under blast load, Materials Today: Proceedings, 87 (2023) 67-73.
[3] T. Mirzababaie Mostofi, M. Rezasefat, M. Sayah Badkhor, H. Babaei, Effect of intense impulsive loading on performance of multi-layered plates, Amirkabir Journal of Mechanical Engineering, 53(Issue 4 (Special Issue)) (2021) 2639-2670. (in Persain)
[4] V. Birman, G.A. Kardomateas, Review of current trends in research and applications of sandwich structures, Composites Part B: Engineering, 142 (2018) 221-240.
[5] F. Kiakojouri, H.R. Tavakoli, M.R. Sheidaii, V. De Biagi, Numerical analysis of all-steel sandwich panel with drilled I-core subjected to air blast scenarios, Innovative Infrastructure Solutions, 7(5) (2022) 320.
[6] H. Mohammadi Hooyeh, A. Naddaf Oskouei, T. Mirzababaie Mostofi, K. Vahedi, Experimental and Numerical Investigation of Trapezoidal Corrugated Core Sandwich Panels Under Oblique Blast Loading, Aerospace Mechanics, 19(2) (2023) 11-23. (in Persian)
[7] Z. Wang, Recent advances in novel metallic honeycomb structure, Composites Part B: Engineering, 166 (2019) 731-741.
[8] B.V. Ramnath, C. Elanchezhian, V. Manickavasagam, R.S. Narayanan, R. Sudharshan, G. Pugazhendhi, A review on sandwich composites and their advancements, Materials Today: Proceedings, 16 (2019) 1146-1151.
[9] S.A. Ahmadi, A. Maleki, M.H. Pashaei, Three-Dimensional Elastic-Plastic Deformation Analysis of Composite Sandwich Panel under Blast Loading, Amirkabir Journal of Mechanical Engineering, 52(5) (2019) 1079-1100. (in Persian)
[10] R.M. Varghese, K.M. Varghese, Comparative study on the blast load response of woven and lattice core metallic sandwich panels, Materials Today: Proceedings, 65 (2022) 1343-1347.
[11] M. Patel, S. Patel, Influence of honeycomb core height on the blast mitigation performance of sandwich panel, Materials Today: Proceedings, 74 (2023) 611-620.
[12] J. Liu, Z. Wang, D. Hui, Blast resistance and parametric study of sandwich structure consisting of honeycomb core filled with circular metallic tubes, Composites Part B: Engineering, 145 (2018) 261-269.
[13] X. Li, Z. Wang, F. Zhu, G. Wu, L. Zhao, Response of aluminium corrugated sandwich panels under air blast loadings: experiment and numerical simulation, International Journal of Impact Engineering, 65 (2014) 79-88.
[14] N. Khaire, M. Gupta, G. Tiwari, Blast resistance of graded aluminium foam core sandwich structure against blast loading, Materials Today: Proceedings, 87 (2023) 159-163.
[15] S.K. Sahu, P.R. Sreekanth, Experimental investigation of in-plane compressive and damping behavior anisotropic graded honeycomb structure, Arabian Journal for Science and Engineering, 47(12) (2022) 15741-15753.
[16] G.S. Langdon, C.J. von Klemperer, G.M. Sinclair, Blast response of sandwich structures: The influence of curvature, in:  Dynamic Deformation, Damage and Fracture in Composite Materials and Structures, Elsevier, 2023, pp. 337-359.
[17] H. Andami, H. Toopchi-Nezhad, Performance assessment of rigid polyurethane foam core sandwich panels under blast loading, International Journal of Protective Structures, 11(1) (2020) 109-130.
[18] M. Rai, A. Chawla, S. Mukherjee, Parametric study of re-entrant honeycomb cored auxetic sandwich panel exposed to blast loading, Materials Today: Proceedings, 87 (2023) 197-203.
[19] R.P. Bohara, S. Linforth, A. Ghazlan, T. Nguyen, A. Remennikov, T. Ngo, Performance of an auxetic honeycomb-core sandwich panel under close-in and far-field detonations of high explosive, Composite Structures, 280 (2022) 114907.
[20] N. Ghate, M.D. Goel, Influence of core topology on blast mitigation application of multi-layered honeycomb core sandwich panel, Materials Today Communications, 36 (2023) 106531.
[21] M. Patel, S. Patel, Effect of honeycomb cell size on the air-blast performance of sandwich panels, Materials Today: Proceedings, 78 (2023) 792-797.
[22] D. Hyde, CONWEP: Conventional Weapons Effects Program, US Army Engineer Waterways Experiment Station, in USA, (1991).
[23] ASCE, American Society of Civil Engineers(ed.), ASCE standard, Reston, Structural Engineering Institute, (2011).
[24] V. Karlos, G. Solomos, Calculation of blast loads for application to structural components, Blast Simulation Technology Development, EUR 26456, Luxembourg: Publications Office of the European Union, JRC87200, (2013).
[25] R. Gilsanz, R. Hamburger, D. Barker, J.L. Smith, A. Rahimian, Steel design guide 26: Design of blast resistant structures, American Institute of Steel Construction. (2013).
[26] UFC, 3-340-02, Structures to resist the effects of accidental explosions. Department of Defense, USA. in, (2008).
[27] A. Zaghloul, A. Remennikov, B. Uy, Enhancement of blast wave parameters due to shock focusing from multiple simultaneously detonated charges, International Journal of Protective Structures, 12(4) (2021) 541-576.
[28] N.W. Mohottige, C. Wu, H. Hao, Characteristics of free air blast loading due to simultaneously detonated multiple charges, International Journal of Structural Stability and Dynamics, 14(04) (2014) 1450002.
[29] F. Bai, Y. Liu, J. Yan, Y. Xu, Z. Shi, F. Huang, Study on the characteristics of blast loads due to two simultaneous detonated charges in real air, International Journal of Non-1304 Linear Mechanics, 146(104108) (2022) 1305.
[30] M. Patel, S. Patel, Novel design of honeycomb hybrid sandwich structures under air-blast, Journal of Sandwich Structures & Materials, 24(8) (2022) 2105-2123.
[31] B. Gaur, M. Patel, S. Patel, Strain rate effect on CRALL under high-velocity impact by different projectiles, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(2) (2023) 103.
[32] M. Patel, S. Patel, S. Ahmad, Blast analysis of efficient honeycomb sandwich structures with CFRP/Steel FML skins, International Journal of Impact Engineering, 178 (2023) 104609.
[33] M. Murugesan, D.W. Jung, Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications, Materials, 12(4) (2019) 609.
[34] Y. Li, X. Ren, T. Zhao, D. Xiao, K. Liu, D. Fang, Dynamic response of stiffened plate under internal blast: Experimental and numerical investigation, Marine Structures, 77 (2021) 102957.
[35] M. Haghgoo, H. Babaei, T. Mirzababaie Mostofi, Numerical Simulation of Triangular Plate Deformation Profile Under Gaseous Detonation Loading, Aerospace Mechanics, 19(1) (2023) 1-15. (in Persian)
[36] H. Bakhshan, E. Oñate, J.M. Carbonell i Puigbó, A Review of the Constitutive Modelling of Metals and Alloys in Machining Process, Archives of Computational Methods in Engineering, 31(3) (2024) 1611-1658.
[37] G. Geng, D. Ding, L. Duan, H. Jiang, A modified Johnson-Cook model of 6061-T6 Aluminium profile, Australian Journal of Mechanical Engineering, 20(2) (2022) 516-526.
[38] S. Patel, M. Patel, The efficient design of hybrid and metallic sandwich structures under air blast loading, Journal of Sandwich Structures & Materials, 24(3) (2022) 1706-1725.