مدل‌سازی و تحلیل ترمودینامیکی بلورساز تحت خلا با گرمایش پمپ حرارتی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک و مکاترونیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

در این مقاله، یک بلورساز گردش اجباری تحت خلأ که از بلورساز، پمپ و مبدل حرارتی تشکیل شده است، باهدف تأمین آب شیرین مصرفی پیشنهاد داده شده است. به‌منظور تأمین هم‌زمان بار گرمایش بلورساز و همچنین برای تقطیر بخار آب خروجی از بلورساز، از پمپ حرارتی به‌عنوان روشی جدید استفاده شده است. یک مجموعه آزمایشگاهی برای نشان‌دادن امکان‌سنجی سیستم پیشنهادی طراحی و ساخته شده که مجموعه شامل سیکل بلورساز گردش اجباری است. میانگین درصد خطا بین نتایج آزمایشگاهی و شبیه‌سازی صورت‌گرفته، 4/8 درصد گزارش شد. نتایج حاکی از آن است که با تغییر دمای ورودی و فشار بلورساز، نرخ تولید کریستال نمک و آب شیرین تولیدی به ترتیب به مقدار 0/65 و 19/81 کیلوگرم بر ساعت افزایش می‌یابد. مصرف انرژی الکتریکی نیز با افزایش دمای ورودی آب تغذیه و ظرفیت گرمایی مبدل حرارتی کاهش می‌یابد و کمترین میزان مصرف انرژی الکتریکی در دمای 50 درجه سانتی‌گراد، فشار بلورساز 0/085 بار و ظرفیت گرمایی مبدل حرارتی 13 کیلووات رخ می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and Thermodynamic Analysis of Vacuum Crystallizer with Heat Pump

نویسندگان [English]

  • Amir Mehrdar
  • Mohsen Nazari
  • Mostafa Nazari
  • Maryam Ramezani Bazan
Department of Mechanical Engineering, Shahrood Univ of Tech, Shahrood, Iran
چکیده [English]

In this article, a forced circulation crystallizer under a vacuum, which consists of crystallizer, pump, and heat exchanger, is proposed for the purpose of providing fresh water for consumption. To simultaneously supply the heating load of the crystallizer and also to distill the water vapor coming out of the crystallizer, a heat pump has been used as a new method. A laboratory set is designed and built to demonstrate the feasibility of the proposed system, which includes a forced circulation crystallizer cycle. The average error percentage between the laboratory and simulation results was reported as 4.8%. The results indicate that by changing the inlet temperature and pressure of the crystallizer, the rate of salt crystal production and freshwater production increases by 0.65 and 19.81 kg/h, respectively. Electric energy consumption also decreases with the increase of feed water inlet temperature and the heat capacity of the heat exchanger, and the lowest amount of electric energy consumption occurs at the temperature of 50 degrees Celsius, the pressure of the crystallizer is 0.085 bar, and the heat capacity of the heat exchanger is 13.25 kw.

کلیدواژه‌ها [English]

  • Forced Circulation Crystallizer
  • Heat Pump
  • Desalination
  • ZLD
  • Numerical Simulation
[1] A. Kandeal, A. Joseph, M. Elsharkawy, M. Elkadeem, M.A. Hamada, A. Khalil, M.E. Moustapha, S.W. Sharshir, Research progress on recent technologies of water harvesting from atmospheric air: A detailed review, Sustainable Energy Technologies and Assessments, 52 (2022) 102000.
[2] S.W. Sharshir, A. Joseph, A. Kandeal, A. Hussien, Performance improvement of tubular solar still using nano-coated hanging wick thin film, ultrasonic atomizers, and cover cooling, Sustainable Energy Technologies and Assessments, 52 (2022) 102127.
[3] L. Garcia-Rodriguez, Seawater desalination driven by renewable energies: a review, Desalination, 143(2) (2002) 103-113.
[4] H.S. Son, M.W. Shahzad, N. Ghaffour, K.C. Ng, Pilot studies on synergetic impacts of energy utilization in hybrid desalination system: multi-effect distillation and adsorption cycle (MED-AD), Desalination, 477 (2020) 114266.
[5] W. Lee, Z. Ng, S. Hubadillah, P. Goh, W. Lau, M. Othman, A. Ismail, N. Hilal, Fouling mitigation in forward osmosis and membrane distillation for desalination, Desalination, 480 (2020) 114338.
[6] A. Lewis, M. Seckler, H. Kramer, G. Van Rosmalen, Industrial crystallization: fundamentals and applications, Cambridge University Press, 2015.
[7] Q. Chen, M. Burhan, M.W. Shahzad, D. Ybyraiymkul, F.H. Akhtar, Y. Li, K.C. Ng, A zero liquid discharge system integrating multi-effect distillation and evaporative crystallization for desalination brine treatment, Desalination, 502 (2021) 114928.
[8] A. Myerson, Handbook of industrial crystallization, Butterworth-Heinemann, 2002.
[9] F. Farahbod, D. Mowla, M.J. Nasr, M. Soltanieh, Experimental study of forced circulation evaporator in zero discharge desalination process, Desalination, 285 (2012) 352-358.
[10] A. Panagopoulos, Beneficiation of saline effluents from seawater desalination plants: fostering the zero liquid discharge (ZLD) approach-a techno-economic evaluation, Journal of Environmental Chemical Engineering, 9(4) (2021) 105338.
[11] F. Farahbod, S. Farahmand, Experimental study of solar pond coupled with forced circulation crystallizer as major stages of proposed zero discharge desalination process, Journal of Thermal Science and Engineering Applications, 6(2) (2014) 021002.
[12] J. Darand, A. Jafarian, S. Tizbin, A hybrid compartmental-CFD model to investigate forced circulation crystallizer performance, Desalination, 533 (2022) 115743.
[13] G. Didar, A. Jafarian, J. Darand, Implementing a one-dimensional quick model for dynamic simulation and economic analysis of a forced circulation crystallizer, Desalination, 565 (2023) 116822.
[14] A. Ghalavand, M.S. Hatamipour, Y. Ghalavand, Clean treatment of rejected brine by zero liquid discharge thermal desalination in Persian Gulf countries, Clean Technologies and Environmental Policy, 23(9) (2021) 2683-2696.
[15] P. Sharan, J.D. McTigue, T.J. Yoon, R. Currier, A.T. Findikoglu, Energy efficient supercritical water desalination using a high-temperature heat pump: A zero liquid discharge desalination, Desalination, 506 (2021) 115020.
[16] H. Jiang, Z. Zhang, W. Gong, Design and evaluation of a parallel-connected double-effect mechanical vapor recompression evaporation crystallization system, Applied Thermal Engineering, 179 (2020) 115646.
[17] A. Khalifa, A. Mezghani, H. Alawami, Analysis of integrated membrane distillation-heat pump system for water desalination, Desalination, 510 (2021) 115087.
[18] B. Wang, J. Shen, W. Wei, L. Jiang, Y. Chen, Evaluation of two-stage humidification-dehumidification desalination systems operated by a modified heat pump, Applied Thermal Engineering, 247 (2024) 123041
[19] S.W. Sharshir, A. Joseph, M.M. Elsayad, A. Kandeal, A new heat pump-operated solar desalination unit integrated with an air recirculating room, Applied Thermal Engineering, 236 (2024) 121487.
[20] M.H. Elbassoussi, M.A. Ahmed, D.U. Lawal, M.A. Antar, S.M. Zubair, The impact of a balanced humidification-dehumidification desalination system driven by a vapor-compression heat-pump system, Energy Conversion and Management: X, 21 (2024) 100521.
[21] Salajegheh, Maryam, Ameri, Mehran. Performance Analysis of a Hybrid Freeze Desalination and CO₂ Refrigeration System. Amirkabir Journal of Mechanical Engineering, (2021) 3351-3366. (in Persian)
[22] P.K. Kundu, I.M. Cohen, D.R. Dowling, J. Capecelatro, Fluid mechanics, Elsevier, 2024.
[23] R. Singal, Hydraulic Machines: Fluid Machinery, IK International Pvt Ltd, 2013.
[24] C. Geankoplis, Transport processes and separation process principles (includes unit operations), Prentice Hall Press, 2003.
[25] A. Lewis, M. Seckler, H. Kramer, G. Van Rosmalen, Industrial crystallization: fundamentals and applications, Cambridge University Press, 2015.
[26] H.P. Bloch, A. Godse, Compressors and modern process applications, John Wiley & Sons, 2006.
[27] Y.A. Cengel, M.A. Boles, Thermodynamics: an engineering approach, Sea, 1000(8862) (2002) 287-293.
[28] R.W. Baker, Membrane technology and applications, John Wiley & Sons, 2023.