[1] V. Divya, M. Anburajan, Finite element analysis of human lumbar spine, In: ICECT 2011 - 2011 3rd International Conference on Electronics Computer Technology, IEEE, (2011), 350–354.
[2] M. Kurutz, Finite element modelling of human lumbar spine, In: D. Moratal, (Ed.), Finite Element Analysis, InTechOpen, (2010), 209–236.
[3] R. Zdero, H. Bougherar, Orthopaedic biomechanics: a practical approach to combining mechanical testing and finite element analysis, In: D. Moratal, (Ed.), Finite Element Analysis, IntechOpen, (2010), 171–194.
[4] A. Rawls, R.E. Fisher, Developmental and functional anatomy of the spine, Genet. Dev. Scoliosis, 1, (2018), 1–29.
[5] T. R. Oxland, Fundamental biomechanics of the spine—what we have learned in the past 25 years and future directions, J. Biomech., 49(6), (2016), 817-832.
[6] J.F. Behrsin, C.A. Briggs, Ligaments of the lumbar spine: a review, Surg. Radiol. Anat. SRA, 10(3), (1988), 211–219.
[7] T. Belytschko, R.F. Kulak, A.B. Schultz, J.O. Galante, Finite element stress analysis of an intervertebral disc, J. Biomech., 7(3), (1974), 277–285.
[8] S.A. Shirazi-Adl, S.C. Shrivastava, A.M. Ahmed, Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study, Spine, 9(2), (1984), 120–134.
[9] A. Shirazi-Adl, A.M. Ahmed, S.C. Shrivastava, Mechanical response of a lumbar motion segment in axial torque alone and combined with compression, Spine, 11(9), (1986), 914–927.
[10] A.G. Patwardhan, R.M. Havey, K.P. Meade, B. Lee, B. Dunlap, A follower load increases the load-carrying capacity of the lumbar spine in compression, Spine, 24(10), (1999), 1003–1009.
[11] H. Zhang, W. Zhu, The path to deliver the most realistic follower load for a lumbar spine in standing posture: a finite element study, J. Biomech. Eng., 141(3), (2019), 31010.
[12] J. Noailly, D. Lacroix, J.A. Planell, Finite element study of a novel intervertebral disc substitute, Spine (Phila Pa 1976), 30(20), (2005), 2257–2264.
[13] J. Noailly, H.J. Wilke, J.A. Planell, D. Lacroix, How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process, J. Biomech., 40(11), (2007), 2414–2425.
[14] U.M. Ayturk, C.M. Puttlitz, Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine, Comput. Methods Biomech. Biomed. Engin., 14(8), (2011), 695–705.
[15] F. Niemeyer, H.J. Wilke, H. Schmidt, Geometry strongly influences the response of numerical models of the lumbar spine—a probabilistic finite element analysis, J. Biomech., 45(8), (2012), 1414–1423.
[16] M. Dreischarf, T. Zander, A. Shirazi-Adl, C.M. Puttlitz, C.J. Adam, C.S. Chen, et al., Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together, J. Biomech., 47(8), (2014), 1757–1766.
[17] F. Azari, N. Arjmand, A. Shirazi-Adl, T. Rahimi-Moghaddam, A combined passive and active musculoskeletal model study to estimate L4-L5 load sharing, J. Biomech., 70, (2018), 157–165.
[18] I. Dehghan‐Hamani, N. Arjmand, A. Shirazi‐Adl, Subject‐specific loads on the lumbar spine in detailed finite element models scaled geometrically and kinematic‐driven by radiography images, Int. J. Numer. Method Biomed. Eng., 35(4), (2019), e3182.
[19] S. Naserkhaki, N. Arjmand, A. Shirazi-Adl, F. Farahmand, M. El-Rich, Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model, J. Biomech., 70, (2018), 33–42.
[20] D. Sanjay, N. Kumar, S. Chanda, Stress-strain distribution in intact L4-L5 vertebrae under the influence of physiological movements: A finite element (FE) investigation, In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, (2021), 12024.
[21] T. Pitzen, F.H. Geisler, D. Matthis, H. Müller-Storz, K. Pedersen, W.I. Steudel, The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment, Eur. Spine J., 10, (2001), 23–29.
[22] K.D. Cao, M.J. Grimm, K.H. Yang, Load sharing within a human lumbar vertebral body using the finite element method, Spine (Phila Pa 1976), 26(12), (2001), 253–260.
[23] E. Punarselvam, M.Y. Sikkandar, M. Bakouri, N.B. Prakash, T. Jayasankar, S. Sudhakar, Different loading condition and angle measurement of human lumbar spine MRI image using ANSYS, J. Ambient Intell. Humaniz. Comput., 12, (2021), 4991–5004.
[24] M. Tanaka, Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: a finite element study, Comput. Biol. Med., 98, (2018), 26–38.
[25] X. Cai, M. Sun, Y. Huang, Z. Liu, C. Liu, C. Du, et al., Biomechanical effect of L4–L5 intervertebral disc degeneration on the lower lumbar spine: a finite element study, Orthop. Surg., 12(3), (2020), 917–930.
[26] J.K. Biswas, M. Rana, A. Malas, S. Roy, S. Chatterjee, S. Choudhury, Effect of single and multilevel artificial intervertebral disc replacement in lumbar spine: a finite element study, Int. J. Artif. Organs, 45(2), (2022), 193–199.
[27] G. Baroud, J. Nemes, P. Heini, T. Steffen, Load shift of the intervertebral disc after a vertebroplasty: a finite-element study, Eur. Spine J., 12, (2003), 421–426.
[28] E. Wagnac, P.J. Arnoux, A. Garo, C.E. Aubin, Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions, Med. Biol. Eng. Comput., 50, (2012), 903–915.
[29] Z.C. Zhong, S.H. Wei, J.P. Wang, C.K. Feng, C.S. Chen, C. Yu, Finite element analysis of the lumbar spine with a new cage using a topology optimization method, Med. Eng. Phys., 28(1), (2006), 90–98.
[30] C.S. Chen, C.K. Cheng, C.L. Liu, W.H. Lo, Stress analysis of the disc adjacent to interbody fusion in lumbar spine, Med. Eng. Phys., 23(7), (2001), 485–493.
[31] E. Wagnac, P.J. Arnoux, A. Garo, M. El-Rich, C.E. Aubin, Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads, J. Biomech. Eng., 133(10) (2011), 1010071-10.
[32] F.A. Pintar, N. Yoganandan, T. Myers, A. Elhagediab, A. Sances Jr, Biomechanical properties of human lumbar spine ligaments, J. Biomech., 25(11) (1992), 1351–1356.