[1] ISO, Standard 15024, Fibre-reinforced Plastic Composites - Determination of Mode I Interlaminar Fracture Toughness, G1C, for Unidirectionally Reinforced Materials, ISO, Geneva, Switzerland, (2001).
[2] ASTM, D5528-13, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, ASTM International, West Conshohocken, PA, USA, (2013).
[3] S.T. Pinho, P. Robinson, L. Iannucci, Developing a four-point bend specimen to measure the mode I intralaminar fracture toughness of unidirectional laminated composites, Composites Science and Technology, 69(7-8) (2009) 1303-1309.
[4] ASTM, E1922-04(15), Standard Test Method for Translaminar Fracture Toughness of Laminated and Pultruded Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, USA, (2015).
[5] A. Pupurs, M.S. Loukil, E. Marklund, J. Varna, D. Mattsson, Transverse crack initiation in thin-ply laminates subjected to tensile loading at low and cryogenic temperatures, Mechanics of Composite Materials, 59 (2024) 1049-1064.
[6] I.G. García, J. Justo, A. Simon, V. Mantič, Experimental study of the size effect on transverse cracking in cross-ply laminates and comparison with the main theoretical models, Mechanics of Materials, 128 (2019) 24-37.
[7] X.Y. Miao, X. Chen, Structural transverse cracking mechanisms of trailing edge regions in composite wind turbine blades, Composite Structures, 308 (2023) 116680.
[8] T. Miyakoshi, T. Atsumi, K. Kosugi, A. Hosoi, T. Tsuda, H. Kawada, Evaluation of very high cycle fatigue properties for transverse crack initiation in cross‐ply carbon fiber‐reinforced plastic laminates, Fatigue & Fracture of Engineering Materials & Structures, 45 (2022) 2403-2414.
[9] T. Xiang, W. Chen, Impact analysis of transverse isotropic freezing expansion in surrounding rock and variation of freezing front on cracks initiation, Computers and Geotechnics, 174 (2024) 106623.
[10] T. Guo, K. Liu, R. Song, Crack propagation characteristics and fracture toughness analysis of rock-based layered material with pre-existing crack under semi-circular bending, Theoretical and Applied Fracture Mechanics, 119 (2022) 103295.
[11] M. Kashtalyan, I.G. García, V. Mantič, Coupled stress and energy criterion for multiple matrix cracking in cross-ply composite laminates, International Journal of Solids and Structures, 139 (2018) 189-99.
[12] J.W. Kim, J.M. Gardner, G. Sauti, R.A. Wincheski, B.D. Jensen, K.E. Wise, E.J. Siochi, Multi-scale hierarchical carbon nanotube fiber reinforced composites towards enhancement of axial/transverse strength and fracture toughness, Composites Part A: Applied Science and Manufacturing, 167 (2023) 107449.
[13] X. Yan, X. Guo, Y. Gao, Y. Lin, N. Zhang, Q. Zhao, Mode-II fracture toughness and crack propagation of pultruded carbon Fiber-Epoxy composites, Engineering Fracture Mechanics, 279 (2023) 109042.
[14] P. Maimí, P.P. Camanho, J.A. Mayugo, C.G. Dávila, A continuum damage model for composite laminates: Part I–Constitutive model, Mechanics of Materials, 39(10) (2007) 897-908.
[15] E.J. Barbero, F.A. Cosso, X. Martinez, Identification of fracture toughness for discrete damage mechanics analysis of glass-epoxy laminates, Applied Composite Materials, 21 (2014) 633-650.
[16] J. León-Becerra, M.Á. Hidalgo-Salazar, O.A. González-Estrada, Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites, The International Journal of Advanced Manufacturing Technology, 126 (2023) 2617-2631.
[17] J.C. Sosa, S. Phaneendra, J.J. Munoz, Modelling of mixed damage on fibre reinforced composite laminates subjected to low velocity impact, International Journal of Damage Mechanics, 22(3) (2013) 356-374.
[18] S.M. Lee, A comparison of fracture toughness of matrix controlled failure modes: delamination and transverse cracking, Journal of Composite Materials, 20(2) (1986) 185-196.
[19] A.C. Garg, Intralaminar and interlaminar fracture in graphite/epoxy laminates, Engineering Fracture Mechanics, 23(4) (1986) 719-733.
[20] X. Huang, J.W. Gillespie Jr, R.F. Eduljee, Effect of temperature on the transverse cracking behavior of cross-ply composite laminates, Composites Part B: Engineering, 28(4) (1997) 419-424.
[21] K.D. Cowley, P.W. Beaumont, The interlaminar and intralaminar fracture toughness of carbon-fibre/polymer composites: The effect of temperature, Composites Science and Technology, 57(11) (1997) 1433-1444.
[22] P.J. Hine, B. Brew, R.A. Duckett, I.M. Ward, The fracture behaviour of carbon fibre reinforced poly (ether etherketone), Composites Science and Technology, 33(1) (1988) 35-71.
[23] P.J. Hine, B. Brew, R.A. Duckett, I.M. Ward, Failure mechanisms in continuous carbon-fibre reinforced PEEK composites, Composites Science and Technology, 35(1) (1989) 31-51.
[24] P.J. Hine, B. Brew, R.A. Duckett, I.M. Ward, Failure mechanisms in carbon-fibre-reinforced poly (ether sulphone), Composites Science and Technology, 43(1) (1992) 37-47.
[25] M.W. Czabaj, J.G. Ratcliffe, Comparison of intralaminar and interlaminar mode I fracture toughnesses of a unidirectional IM7/8552 carbon/epoxy composite, Composites Science and Technology, 89 (2013) 15-23.
[26] A. Blázquez, M.L. Velasco, P. Caballos, F. París, Characterization by fracture mechanics of intra and interlaminar damage in composite laminates, Engineering Fracture Mechanics, 315 (2025) 110812.
[27] J. Wang, Z. Liu, J. Li, X. Liu, Y. Shen, Z. Zhang, X. Wang, X. Chen, Exploring the influence of specimen types on the intralaminar fracture behavior of fiber-reinforced polymer matrix composites, Theoretical and Applied Fracture Mechanics, 134 (2024) 104684.
[28] J. Xiang, P. Cheng, K. Wang, Y. Wu, Y. Rao, Y. Peng, Interlaminar and translaminar fracture toughness of 3D‐printed continuous fiber reinforced composites: A review and prospect, Polymer Composites, 45(5) (2024) 3883-3900.
[29] J. Fisher, M.W. Czabaj, A new test for characterization of interlaminar tensile strength of tape-laminate composites, Composites Part A: Applied Science and Manufacturing, 176 (2024) 107868.
[30] F. Ramezani, R.J. Carbas, E.A. Marques, A.M. Ferreira, L.F. da Silva, A study of the fracture mechanisms of hybrid carbon fiber reinforced polymer laminates reinforced by thin‐ply, Polymer Composites, 44(3) (2023) 1672-1683.
[31] R. Rutar, J. Serra, Q. Bausiere, C. Bouvet, Experimental characterization of tensile and compressive translaminar fracture toughness coupling multi-physics measurements, Engineering Fracture Mechanics, 291 (2023) 109568.
[32] M. Saeedifar, H. Hosseini Toudeshky, The effect of interlaminar and intralaminar damage mechanisms on the quasi-static indentation strength of composite laminates, Applied Composite Materials, 30(3) (2023) 871-886.
[33] S.A. Safipour, M. Heshmati, Investigation of Interlaminar Mode-I Fracture Toughness of Corrugated Composite Plates, Amirkabir J. Mech Eng, 54(2) (2022) 415-432. (In Persian).