[1] A.K. Soni, S.S. Godara, R. Gade, V. Brenia, R.S. Shekhawat, K.K. Saxena, R. Rajendra Prasad, Modelling and thermal analysis for automobile piston using ANSYS, International Journal on Interactive Design and Manufacturing, 17 (2023) 2473–2487.
[2] W. Wang, Y. Lu, Z. Li, H. Lai, Simulations of engine knock flow field and wave-induced fatigue of a downsized gasoline engine, International Journal of Engine Research, 22(2) (2019)1-15.
[3] M. Najafi, H. Dastani, M. Abedini, Stress analysis and fatigue life assessment of a piston in an upgraded engine, Journal of Failure Analysis and Prevention, 19(2) (2019) 402-404.
[4] P. Baldissera, C. Delprete C, Finite Element Thermo-Structural Methodology for Investigating Diesel Engine Pistons with Thermal Barrier Coating, SAE International Journal Engines, 12(1) (2019) 1-12.
[5] Y. Yin, Z. Wu, Z. Hu, Q. Long, W. Ding, M. Li, X. Han, Q. Liu, L. Li, Numerical Simulation of Surface Temperature Fluctuation and Thermal Barrier Coating at the Piston Top for a Diesel Engine Performance Improvement. SAE Technical Paper NO.2021-01-0229, (2021).
[6] Z. Yao, Z. Qian, Thermal analysis of nano ceramic coated piston used in natural gas engine, Journal of Alloys and Compounds, 768 (2018) 441-450.
[7] S. Prakash, M. Prabhahar, O.P. Niyas, S. Faris, C. Vyshnav, Thermal barrier coating on IC engine piston to improve efficiency using dual fuel, Materials Today: Proceedings, 33(1) (2020) 919-924.
[8] S. Saravanan, C. Ramesh Kumar, A. Pugazhendhi, K. Brindhadevi, Role of thermal barrier coating and porous medium combustor for a diesel engine: An experimental study, Fuel, 280 (2020) 1-7.
[9] Y. Paik, C.R. Sahu, K.K. Pandey, S.K. Barik, S. Murugan, D. Debasish, Effect of Thermal Barrier Coating on Performance and Emissions of a DI Diesel Engine, SAE Technical Paper NO.2019-32-0526, (2019).
[10] M. Pang, X.H. Zhang, Q.X. Liu, Y.X. Fu, G. Liu, W.D. Tan, Effect of preheating temperature of the substrate on residual stress of Mo/8YSZ functionally gradient thermal barrier coatings prepared by plasma spraying, Surface and Coatings Technology, 385 (2020) 1-13.
[11] P. Ramaswamy, K. Vattappara, S.A. Gomes, K.T. Pasupuleti, Residual stress analysis on functionally graded 8% Y2O3-ZrO2 and NiCrAlY thermal barrier coatings. Materials Today: Proceedings, 66 (2022) 1638–1644.
[12] M. Nouby, K. Ghazaly, A. Abd El-Gwwad, Evaluation of gasoline engine piston with various coating materials using finite element method, International Journal of Automotive Engineering, 9(2) (2019) 2942-2948.
[13] Y. Yao, K. Hu, R. Li, Enhanced high-temperature thermal fatigue property of aluminum alloy piston with Nano PYSZ thermal barrier coatings, Journal of Alloys and Compounds, 790 (2019) 466-479.
[14] Z. Yao, W. Li, Microstructure and thermal analysis of APS nano PYSZ coated aluminum alloy piston, Journal of Alloys and Compounds, 812 (2019) 1-11.
[15] L.G. Tan, G.L. Li, C. Tao, P.F. Feng, Study on fatigue life prediction of thermal barrier coatings for high-power engine pistons, Engineering Failure Analysis, 138 (2022) 1-12.
[16] Y. Liu, G. Jing, H. Liu, W. Zhang, M. Han, S. Xiao, Z. Zhang, Failure analysis and design improvements of steel piston for a high-power marine diesel engine, Engineering Failure Analysis, 142 (2022) 1-19.
[17] N. Dagar, R. Sharma, M.L. Rinawa, S. Gupta, V. Chaudhary, P. Gupta, Design and analysis of piston using aluminum alloy and composites in Solidworks and Ansys. Materials Today: Proceedings, 67 (2022) 784-791.
[18] A. Bhatt, J. Gandolfo, K. Vedpathak, C. Jiang, E. ordan, B. Lawler, B. Gainey, Experimental Study of Low Thermal Inertia Thermal Barrier Coating in a Spark Ignited Multicylinder Production Engine, SAE Technical Paper No.2023-01-1617, (2023).
[19] Y. Du, C. Fei, Z. Qian, S. Zhu, Z. Shu, K. Zho, Simulation analysis of thermal insulation performance of diesel engine piston based on PEO and La2Zr2O7 thermal barrier coating, Case Studies in Thermal Engineering, 59 (2024) 1-16.
[20] B.N. Pathak, A. Chandra, A. Kumar, A.K. Mishra, A. Saxena, B. Kandpal, Study on wear behaviour of aluminium-based piston alloy using different coatings, Materials Today: Proceedings, 72 (2023) 1-10.
[21] A.K. Sahu, S. Chakkamadathil, S. Das, Integrated Simulation Methodology to Predict Engine Head, Block, and Piston Temperatures, SAE Technical Paper No.2024-26-0315, (2024).
[22] W. Wang, Y. Lu, Z. Li, H. Lai, Simulations of engine knock flow field and wave-induced fatigue of a downsized gasoline engine, International Journal of Engine Research, 22(2) (2019) 1-15.
[23] M. Shariati, H. Hatamic, M. Damghani Nourid, Experimental investigations on the softening and ratcheting behaviors of steel cylindrical shell under cyclic axial loading, Journal of Computational & Applied Research in Mechanical Engineering, 2(2) (2013) 11-22.
[24] M. Shariati, H. Hatami, H. Torabi, H.R. Epakchi, Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading, Structural Engineering and Mechanics, 44 (6) (2012) 753-762.
[25] M Shariati, H. Hatami, H.R. Eipakchi, H. Yarahmadi, H. Torabi, M. Shariati, Experimental and numerical investigations on softening behavior of POM under cyclic strain-controlled loading, Polymer-Plastics Technology and Engineering, 50 (15) (2011) 1576-1582.
[26] H. Hatami, M. Shariati, Numerical and experimental investigation of SS304L cylindrical shell with cutout under uniaxial cyclic loading, Iranian Journal of Science and Technology Transactions of Mechanical Engineering, 43(2) (2019) 139-153.
[27] K. Mollenhauer, H. Tschoeke, Handbook of Diesel Engines. Springer Heidelberg Dordrecht London New York, 2010.
[28] H. Golbakhshi, M. Namjoo, M. Dowlati, F. Khoshnam, Evaluating the coupled thermo-mechanical stresses for an aluminum alloy piston used in a gasoline engine XU7, The Journal of Engine Research, 42 (2016) 33-41.
[29] C.R. Ferguson, A.T. Kirkpatrick AT, Internal combustion engines: applied thermo-sciences. John Wiley & Sons, 2015.
[30] S.G. Pandian, S.P. Rengarajan, T.P. Babu, V. Natarajan, H. Kanagasabesan, Thermal and Structural Analysis of Functionally Graded NiCrAlY/YSZ/Al2O3 Coated Piston, SAE International Paper No.2015-01-9081, (2015).
[31] J.B. Heywood JB, Internal combustion engine fundamentals. McGraw-Hill Education, 2018.
[32] N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabi, Methods of measuring residual stresses in components, Materials and Design, 35 (2012) 572-588.
[33] Y.L. Lee, J. Pan, R.B. Hathaway, M.E. Barkey, Fatigue Testing and Analysis: Theory and Practice. Elsevier Butterworth-Heinemann, 2005.
[34] E. Mancaruso, L. Sequino, Vaglieco BM. Temperature Measurements of the Piston Optical Window in a Research Compression Ignition Engine to Set-Up a 1d Model of Heat Transfer in Transient Conditions, SAE Technical Paper No. 2019-24-0182, (2019).
[35] M. Ranjbar-Far, Numerical simulation of thermo-layered systems behavior, application to the Case of thermal barrier systems. PhD Thesis. University of Limoges. Limoges Cedex. France, 2011.
[36] G.H. Farrahi, M. Rezvani Rad, M. Azadi, Coating thickness effect on stress distribution of coated cylinder head considering residual stress, The Journal of Engine Research, 26 (2012) 49-57.
[38] H. Ashouri, A. Afshari, Effect of oil gallery on the piston thermo-mechanical stresses. Journal of New Applied and Computational Findings in Mechanical Systems, 3(3) (2023) 1-14.
[39] F.S. Silva, Fatigue on engine pistons – A compendium of case studies, Journal of Engineering Failure Analysis, 13 (2006) 480-492.