[1] E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, K. H. Kim, Solar energy: Potential and future prospects, Renewable and Sustainable Energy Reviews, 82(1) (2018) 894-900.
[2] J. M. McCarthy, S. Watkins, A. Deivasigamani, S. J. John, Fluttering energy harvesters in the wind: A review, Journal of Sound and Vibration, 361 (2016) 355-377.
[3] W. H. Chen, Y. X. Lin, X. D. Wang, Y. L. Lin, A comprehensive analysis of the performance of thermoelectric generators with constant and variable properties, Applied Energy, 241 (2019) 11-24.
[4] M. Piñuela, P. D. Mitcheson, S. Lucyszyn, Ambient RF energy harvesting in urban and semi-urban environments, IEEE transactions on microwave theory and techniques, 61(7) (2013) 2715-2726.
[5] C. Wei, X. Jing, A comprehensive review on vibration energy harvesting: Modelling and realization, Renewable and Sustainable Energy Reviews, 74 (2017) 1-18.
[6] D. A. Wang, K. H. Chang, Electromagnetic energy harvesting from flow induced vibration, Microelectronics Journal, 41 (2010) 356-364.
[7] R. Ebrahimi, S. Ziaei-Rad, Design, modelling and experimental verification of a tunable electromagnetic generator for multi-directional vibration energy harvesting, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(3) (2024) 117.
[8] F. U. Khan, M. U. Qadir, State-of-the-art in vibration-based electrostatic energy harvesting, Journal of Micromechanics and Microengineering, 26 (2016) 103001.
[9] R. T. Aljadiri, L. Y. Taha, P. Ivey, Electrostatic energy harvesting systems: A better understanding of their sustainability, Journal of Clean Energy Technologies, 5(5) (2017) 409-416.
[10] C. A. Howells, Piezoelectric energy harvesting, Energy Conversion and Management, Vol. 50, No. 7, (2009) 1847-1850.
[11] N. Sezer, M. Koç, A comprehensive review on the state-of-the-art of piezoelectric energy harvesting, Nano Energy, 80 (2021) 105567.
[12] S. C. Stanton, C. C. McGehee, B. P. Mann, Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator, Physica D: Nonlinear Phenomena, 239(10) (2010) 640-653.
[13] M. I. Friswell, S. F. Ali, O. Bilgen, S. Adhikari, A. W. Lees, A. G. Litak, Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass, Journal of Intelligent Material Systems and Structures, 23(13) (2012) 1505-1521.
[14] G. Litak, M. I. Friswell, S. Adhikari, Regular and chaotic vibration in a piezoelectric energy harvester, Meccanica, 51 (2016) 1017-1025.
[15] Y. Uzun, E. Kurt, The effect of periodic magnetic force on a piezoelectric energy harvester, Sensors and Actuators A: Physical, 192 (2013) 58-68.
[16] M. A. Halim, S. Khym, J. Y. Park, Impact based frequency increased piezoelectric vibration energy harvester for human motion related environments, 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, (2013) 949-952.
[17] K. Q. Fan, F. B. Chao, J. G. Zhang, W. D. Wang, X. H. Che, Design and experimental verification of a bi-directional nonlinear piezoelectric energy harvester, Energy conversion and management, 86 (2014) 561-567.
[18] T. Sato, H. Igarashi, A chaotic vibration energy harvester using magnetic materia, Smart materials and structures, 24 (2015) 025033.
[19] M. A. Halim, J. Y Park, Piezoceramic based wideband energy harvester using impact-enhanced dynamic magnifier for low frequency vibration, Ceramics International, 41 (2015) S702-S707.
[20] X. He, K. S. Teh, S. Li, L. Dong, S. Jiang, Modeling and experimental verification of an impact-based piezoelectric vibration energy harvester with a rolling proof mass, Sensors and Actuators A: Physical, 259 (2017) 171-179.
[21] L. Zhao, Y. Yang, An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting, Applied Energy, 212 (2018) 233-243.
[22] G. Hu, L. Tang, R. Das, P. Marzocca, A two-degree-of-freedom piezoelectric energy harvester with stoppers for achieving enhanced performance, International Journal of Mechanical Sciences, 149 (2018) 500-507.
[23] J. Zhang, L. Qin, A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact-and rope-driven hybrid mechanism, Applied Energy, 240 (2019) 26-34.
[24] C. Wei, K. Zhang, C. Hu, Y. Wang, H. Taghavifar, X. Jing, A tunable nonlinear vibrational energy harvesting system with scissor-like structure, Mechanical Systems and Signal Processing, 125 (2019) 202-214.
[25] M. Li, X. Jing, Novel tunable broadband piezoelectric harvesters for ultralow-frequency bridge vibration energy harvesting, Applied Energy, 255 (2019) 113829.
[26] T. Todorov, S. Valchev, F. Moll, N. Nikolov, R. Nikolov, Combined Piezoelectric vibroimpact energy harvester with improved performance, 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency, (2019) 650-655.
[27] D. X. Cao, W. Xia, X. Y. Guo, S. K Lai, Modeling and experiment of vibro-impact vibration energy harvester based on a partial interlayer-separated piezoelectric beam, Journal of Intelligent Material Systems and Structures, 32(8) (2021) 817-831.
[28] W. Chen, J. Mo, J. Zhao, H. Ouyang, A two-degree-of-freedom pendulum-based piezoelectric-triboelectric hybrid energy harvester with vibro-impact and bistable mechanism, Energy, 304 (2024) 132143.
[29] D. X. Cao, C. H. Zhan, X. Y. Guo, M. H. Yao, An Impact-Driven Enhanced Tuning Fork for Low-Frequency Ambient Vibration Energy Harvesting: Modeling, Simulation, and Experiment, Journal of Vibration Engineering & Technologies, 12 (2024) 5073-5088.
[30] A. Erturk, D. J. Inman, Piezoelectric energy harvesting, Hoboken: John Wiley & Sons, 2011.
[31] A. Erturk, D. J. Inman, A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters, Journal of Vibration and Acoustic, 130 (2008) 041002.
[32] S. Timoshenko, D. H. Young, Elements of Strength of Materials, New York: Van Nostrand Reinhold, 1968.
[33] L. Meirovitch, Principles and techniques of vibrations, New Jersey: Prentice-Hall, 1997.
[34] N. G. Elvin, A. A. Elvin, The flutter response of a piezoelectrically damped cantilever pipe, Journal of Intelligent Material Systems and Structures, 20(16) (2009) 2017-2026.
[35] A. Erturk, Electromechanical modeling of piezoelectric energy harvesters, Phd Thesis, Virginia Polytechnic Institute and State University, Blacksburg, 2009.
[36] G. M. Jenkins, D. G. Watt, Spectral analysis and its applications, Michigan: Holden-Day, 1969.
[37] F. C. Moon, Chaotic vibration, an introduction for applied scientists and engineers, New Jersey: John Wiley, 2004.
[38] Y. Chen, Bifurcation and chaos in engineering, Springer, 1998.