[1] W. Liu, B. Yin, B. Yan, A survey on the exoskeleton rehabilitation robot for the lower limbs, in: 2016 2nd international conference on control, automation and robotics (ICCAR), IEEE, 2016, pp. 90-94.
[2] G. Carpino, D. Accoto, N.L. Tagliamonte, G. Ghilardi, E. Guglielmelli, Lower limbs wearable robots for physiological gait restoration: state of the art and motivations, MEDIC. METODOLOGIA DIDATTICA E INNOVAZIONE CLINICA, 21(2) (2013) 72-80.
[3] L. Zhiqiang, X. Hanxing, L. Weilin, Y. Zheng, Proceeding of Human Exoskeleton Technology and Discussions on Future, MECHANICAL ENGINEERING, 27(3) (2014).
[4] Z. Li, H. Xie, W. Li, Z. Yao, Proceeding of human exoskeleton technology and discussions on future research, Chinese Journal of Mechanical Engineering, 27 (2014) 437-447.
[5] C. Siviy, L.M. Baker, B.T. Quinlivan, F. Porciuncula, K. Swaminathan, L.N. Awad, C.J. Walsh, Opportunities and challenges in the development of exoskeletons for locomotor assistance, Nature Biomedical Engineering, 7(4) (2023) 456-472.
[6] F. Pietro, Device for the automatic control of the articulation of the knee applicable to a prothesis of the thigh, in, Google Patents, 1942.
[7] J. Jansen, Phase I report: DARPA exoskeleton program, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2004.
[8] H. Kazerooni, R. Steger, The Berkeley Lower Extremity Exoskeleton, Journal of Dynamic Systems, Measurement, and Control, 128(1) (2005) 14-25.
[9] A.B. Zoss, H. Kazerooni, A. Chu, Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX), IEEE/ASME Transactions on mechatronics, 11(2) (2006) 128-138.
[10] E. Guizzo, H. Goldstein, The rise of the body bots [robotic exoskeletons], IEEE spectrum, 42(10) (2005) 50-56.
[11] C.J. Walsh, K. Pasch, H. Herr, An autonomous, underactuated exoskeleton for load-carrying augmentation, in: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006, pp. 1410-1415.
[12] C.J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente, H. Herr, Development of a lightweight, underactuated exoskeleton for load-carrying augmentation, in: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., IEEE, 2006, pp. 3485-3491.
[13] G. Colombo, M. Joerg, R. Schreier, V. Dietz, Treadmill training of paraplegic patients using a robotic orthosis, Journal of rehabilitation research and development, 37(6) (2000) 693-700.
[14] S. Hesse, D. Uhlenbrock, A mechanized gait trainer for restoration of gait, Journal of rehabilitation research and development, 37(6) (2000) 701-708.
[15] J.F. Veneman, R. Kruidhof, E.E. Hekman, R. Ekkelenkamp, E.H. Van Asseldonk, H. Van Der Kooij, Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation, IEEE Transactions on neural systems and rehabilitation engineering, 15(3) (2007) 379-386.
[16] S.K. Banala, S.K. Agrawal, J.P. Scholz, Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients, in: 2007 IEEE 10th international conference on rehabilitation robotics, IEEE, 2007, pp. 401-407.
[17] S.K. Banala, S.H. Kim, S.K. Agrawal, J.P. Scholz, Robot assisted gait training with active leg exoskeleton (ALEX), IEEE transactions on neural systems and rehabilitation engineering, 17(1) (2008) 2-8.
[18] M. Girone, G. Burdea, M. Bouzit, V. Popescu, J. Deutsch, Orthopedic rehabilitation using the “Rutgers ankle” interface, in: Medicine Meets Virtual Reality 2000, Ios Press, 2000, pp. 89-95.
[19] D.P. Ferris, K.E. Gordon, G.S. Sawicki, A. Peethambaran, An improved powered ankle–foot orthosis using proportional myoelectric control, Gait & posture, 23(4) (2006) 425-428.
[20] P. Beyl, M. Van Damme, R. Van Ham, B. Vanderborght, D. Lefeber, Design and control of a lower limb exoskeleton for robot-assisted gait training, Applied Bionics and Biomechanics, 6(2) (2009) 229-243.
[21] K.W. Hollander, R. Ilg, T.G. Sugar, D. Herring, An Efficient Robotic Tendon for Gait Assistance, Journal of Biomechanical Engineering, 128(5) (2006) 788-791.
[22] D.P. Ferris, J.M. Czerniecki, B. Hannaford, An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles, Journal of Applied Biomechanics, 21(2) (2005) 189-197.
[23] S. Jezernik, K. Jezernik, M. Morari, Impedance control based gait-pattern adaptation for a robotic rehabilitation device, IFAC Proceedings Volumes, 35(2) (2002) 389-393.
[24] S. Jezernik, G. Colombo, M. Morari, Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis, IEEE Transactions on Robotics and Automation, 20(3) (2004) 574-582.
[25] R. Ekkelenkamp, P. Veltink, S. Stramigioli, H. van der Kooij, Evaluation of a virtual model control for the selective support of gait functions using an exoskeleton, in: 2007 IEEE 10th International Conference on Rehabilitation Robotics, IEEE, 2007, pp. 693-699.
[26] J.L. Emken, S.J. Harkema, J.A. Beres-Jones, C.K. Ferreira, D.J. Reinkensmeyer, Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury, IEEE Transactions on Biomedical Engineering, 55(1) (2007) 322-334.
[27] A.S.S. Abadi, P.H. Dehkordi, R. Hajiyan, R. Kowalik, W. Wróblewski, Design and real-time evaluation of a novel observer-based predefined-time controller for the industrial processes, ISA transactions, 156 (2025) 551-564.
[28] J.A. de la Tejera, R. Bustamante-Bello, R.A. Ramirez-Mendoza, J. Izquierdo-Reyes, Systematic review of exoskeletons towards a general categorization model proposal, Applied Sciences, 11(1) (2020) 76.
[29] P. Maurice, J. Čamernik, D. Gorjan, B. Schirrmeister, J. Bornmann, L. Tagliapietra, C. Latella, D. Pucci, L. Fritzsche, S. Ivaldi, J. Babič, Objective and Subjective Effects of a Passive Exoskeleton on Overhead Work, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1) (2020) 152-164.
[30] R.P. Matthew, E.J. Mica, W. Meinhold, J.A. Loeza, M. Tomizuka, R. Bajcsy, Introduction and initial exploration of an active/passive exoskeleton framework for portable assistance, in: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2015, pp. 5351-5356.
[31] Y. Yao, D. Shao, M. Tarabini, S.A. Moezi, K. Li, P. Saccomandi, Advancements in sensor technologies and control strategies for lower-limb rehabilitation exoskeletons: A comprehensive review, Micromachines, 15(4) (2024) 489.
[32] O. Coser, C. Tamantini, P. Soda, L. Zollo, AI-based methodologies for exoskeleton-assisted rehabilitation of the lower limb: a review, Frontiers in Robotics and AI, 11 (2024) 1341580.
[33] M. Belal, N. Alsheikh, A. Aljarah, I. Hussain, Deep learning approaches for enhanced lower-limb exoskeleton control: A review, IEEE Access, (2024).
[34] D.D. Molinaro, K.L. Scherpereel, E.B. Schonhaut, G. Evangelopoulos, M.K. Shepherd, A.J. Young, Task-agnostic exoskeleton control via biological joint moment estimation, Nature, 635(8038) (2024) 337-344.
[35] A. Soltani Sharif Abadi, P. Alinaghi Hosseinabadi, A. Hameed, A. Ordys, B. Pierscionek, Fixed-time observer-based controller for the human–robot collaboration with interaction force estimation, International Journal of Robust and Nonlinear Control, 35(10) (2025) 4062-4095.
[36] S. Arunkumar, N. Jayakumar, A comprehensive review on lower limb exoskeleton: from origin to future expectations, International Journal on Interactive Design and Manufacturing (IJIDeM), (2024).
[37] W. Chen, J. Li, S. Zhu, X. Zhang, Y. Men, H. Wu, Gait recognition for lower limb exoskeletons based on interactive information fusion, Applied Bionics and Biomechanics, 2022(1) (2022) 9933018.
[38] G. Chen, C.K. Chan, Z. Guo, H. Yu, A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy, Critical Reviews™ in Biomedical Engineering, 41(4-5) (2013).
[39] N. Yagn, Apparatus for facilitating walking, running, and jumping, in, US Patents 1889.
[40] N. Yagn, Apparatus for facilitating walking, running, and jumping, in, US Patents 1890.
[41] S. Qiu, Z. Pei, C. Wang, Z. Tang, Systematic Review on Wearable Lower Extremity Robotic Exoskeletons for Assisted Locomotion, Journal of Bionic Engineering, 20(2) (2023) 436-469.
[42] J. Vertut, P. Coiffet, Teleoperation and robotics: Applications and technology, 1 ed., Springer, Dordrecht, 2013.
[43] R.S. Mosher, Handyman to Hardiman, SAE Transactions, 76 (1968) 588-597.
[44] R.S. Mosher, Force-reflecting electrohydraulic servomanipulator, Electro-Technology, Dec., (1960) 138-141.
[45] M. Vukobratovic, D. Hristic, Z. Stojiljkovic, Development of active anthropomorphic exoskeletons, Medical and biological engineering, 12 (1974) 66-80.
[46] M. Vukobratovic, D. Surdilovic, Y. Ekalo, D. Katic, Dynamics And Robust Control Of Robot-environment Interaction, World Scientific Publishing Company, 2009.
[47] R.S. Mosher, Handyman to hardiman, Sae Transactions, (1968) 588-597.
[48] K. Corker, J.H. Lyman, M. Saleem Sheredos, A PRELIMINARY EVALUATION OF REMOTE MEDICAL MANIPULATORSа, Bulletin of prosthetics research, (32) (1979) 107.
[49] J.A. Moore, Pitman a powered exoskeleton suit for the infantryman, Los Alamos National Laboratory, 16 (1986).
[50] X. Guan, L. Ji, R. Wang, Development of exoskeletons and applications on rehabilitation, in: MATEC Web of Conferences, EDP Sciences, 2016, pp. 02004.
[51] Y. Sankai, K. Fujiwara, K. Watanabe, H. Moriyama, HOJO-brain for motion control of robots and biological systems, Artificial Life and Robotics, 2 (1998) 162-169.
[52] Y. SANKAI, Study on hybrid power assist HAL-1 for walking aid using EMG, in: Proceedings of the JME on Ibaraki Symposium,(2000-3), 2000.
[53] H. Kazerooni, J.-L. Racine, L. Huang, R. Steger, On the control of the berkeley lower extremity exoskeleton (BLEEX), in: Proceedings of the 2005 IEEE international conference on robotics and automation, IEEE, 2005, pp. 4353-4360.
[54] C.J. Walsh, K. Endo, H. Herr, A quasi-passive leg exoskeleton for load-carrying augmentation, International Journal of Humanoid Robotics, 4(03) (2007) 487-506.
[55] R. Bogue, Exoskeletons and robotic prosthetics: a review of recent developments, Industrial Robot: an international journal, 36(5) (2009) 421-427.
[56] R. Bogue, Robotic exoskeletons: a review of recent progress, Industrial Robot: An International Journal, 42(1) (2015) 5-10.
[57] Z. Lim, The rise of robots and the implications for military organizations, Monterey, California: Naval Postgraduate School, 2013.
[58] Y. Sankai, HAL: Hybrid assistive limb based on cybernics, in: Robotics research: The 13th international symposium ISRR, Springer, 2011, pp. 25-34.
[59] J.L. Contreras-Vidal, R.G. Grossman, NeuroRex: A clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton, in: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2013, pp. 1579-1582.
[60] D. Charrett, FIDIC Contracts in Europe: A Practical Guide to Application, Informa Law from Routledge, London, 2022.
[61] E. Prassler, A. Baroncelli, Team ReWalk Ranked First in the Cybathlon 2016 Exoskeleton Final [Industrial Activities], IEEE Robotics & Automation Magazine, 24(4) (2017) 8-10.
[62] K. Suzuki, G. Mito, H. Kawamoto, Y. Hasegawa, Y. Sankai, Intention-based walking support for paraplegia patients with Robot Suit HAL, Advanced Robotics, 21(12) (2007) 1441-1469.
[63] H. Shimada, Y. Kimura, T. Suzuki, T. Hirata, M. Sugiura, Y. Endo, K. Yasuhara, K. Shimada, K. Kikuchi, M. Hashimoto, M. Ishikawa, K. Oda, K. Ishii, K. Ishiwata, The Use of Positron Emission Tomography and $[^{18}{\rm F}]$Fluorodeoxyglucose for Functional Imaging of Muscular Activity During Exercise With a Stride Assistance System, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(3) (2007) 442-448.
[64] M.S. Cherry, S. Kota, D.P. Ferris, An elastic exoskeleton for assisting human running, in: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2009, pp. 727-738.
[65] S. Jezernik, M. Morari, Controlling the human-robot interaction for robotic rehabilitation of locomotion, in: 7th International Workshop on Advanced Motion Control. Proceedings (Cat. No. 02TH8623), IEEE, 2002, pp. 133-135.
[66] R. Riener, L. Lunenburger, S. Jezernik, M. Anderschitz, G. Colombo, V. Dietz, Patient-cooperative strategies for robot-aided treadmill training: first experimental results, IEEE transactions on neural systems and rehabilitation engineering, 13(3) (2005) 380-394.
[67] S. Kotov, V.Y. Lijdvoy, A. Sekirin, K. Petrushanskaya, E. Pismennaya, The efficacy of the exoskeleton ExoAtlet to restore walking in patients with multiple sclerosis, Zhurnal nevrologii i psikhiatrii imeni SS Korsakova, 117(10. Vyp. 2) (2017) 41-47.
[68] J.M. Donelan, Q. Li, V. Naing, J.A. Hoffer, D. Weber, A.D. Kuo, Biomechanical energy harvesting: generating electricity during walking with minimal user effort, Science, 319(5864) (2008) 807-810.
[69] T. Gurriet, S. Finet, G. Boeris, A. Duburcq, A. Hereid, O. Harib, M. Masselin, J. Grizzle, A.D. Ames, Towards restoring locomotion for paraplegics: Realizing dynamically stable walking on exoskeletons, in: 2018 IEEE international conference on robotics and automation (ICRA), IEEE, 2018, pp. 2804-2811.
[70] A.T. Asbeck, R.J. Dyer, A.F. Larusson, C.J. Walsh, Biologically-inspired soft exosuit, in: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), IEEE, 2013, pp. 1-8.
[71] P. Yuan, T. Wang, F. Ma, M. Gong, Key technologies and prospects of individual combat exoskeleton, in: Knowledge Engineering and Management: Proceedings of the Seventh International Conference on Intelligent Systems and Knowledge Engineering, Beijing, China, Dec 2012 (ISKE 2012), Springer, 2014, pp. 305-316.
[72] J. Stein, L. Bishop, D.J. Stein, C.K. Wong, Gait training with a robotic leg brace after stroke: a randomized controlled pilot study, American journal of physical medicine & rehabilitation, 93(11) (2014) 987-994.
[73] J. Bae, C. Siviy, M. Rouleau, N. Menard, K. O'Donnell, I. Geliana, M. Athanassiu, D. Ryan, C. Bibeau, L. Sloot, A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke, in: 2018 IEEE international conference on robotics and automation (ICRA), IEEE, 2018, pp. 2820-2827.
[74] L.N. Awad, J. Bae, K. O’Donnell, S.M.M. De Rossi, K. Hendron, L.H. Sloot, P. Kudzia, S. Allen, K.G. Holt, T.D. Ellis, C.J. Walsh, A soft robotic exosuit improves walking in patients after stroke, Science Translational Medicine, 9(400) (2017) eaai9084.
[75] R.S. Calabrò, A. Cacciola, F. Bertè, A. Manuli, A. Leo, A. Bramanti, A. Naro, D. Milardi, P. Bramanti, Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?, Neurological Sciences, 37 (2016) 503-514.
[76] E. Hong, P.H. Gorman, G.F. Forrest, P.K. Asselin, S. Knezevic, W. Scott, S.B. Wojciehowski, S. Kornfeld, A.M. Spungen, Mobility Skills With Exoskeletal-Assisted Walking in Persons With SCI: Results From a Three Center Randomized Clinical Trial, Frontiers in Robotics and AI, Volume 7 - 2020 (2020).
[77] L.N. Awad, A. Esquenazi, G.E. Francisco, K.J. Nolan, A. Jayaraman, The ReWalk ReStore™ soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation, Journal of neuroengineering and rehabilitation, 17 (2020) 1-11.
[78] A. Esquenazi, M. Talaty, A. Packel, M. Saulino, The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury, American journal of physical medicine & rehabilitation, 91(11) (2012) 911-921.
[79] M.B. Popović, Biomechanics and robotics, CRC Press, 2013.
[80] S. Rafique, S.M. Rana, N. Bjorsell, M. Isaksson, Evaluating the advantages of passive exoskeletons and recommendations for design improvements, Journal of Rehabilitation and Assistive Technologies Engineering, 11 (2024) 20556683241239875.
[81] A. Plaza, M. Hernandez, G. Puyuelo, E. Garces, E. Garcia, Lower-limb medical and rehabilitation exoskeletons: A review of the current designs, IEEE Reviews in Biomedical Engineering, 16 (2021) 278-291.
[82] T. Li, Q. Li, A systematic review on load carriage assistive devices: Mechanism design and performance evaluation, Mechanism and Machine Theory, 180 (2023) 105142.
[83] L. He, C. Xiong, Q. Zhang, W. Chen, C. Fu, K.-M. Lee, A backpack minimizing the vertical acceleration of the load improves the economy of human walking, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(9) (2020) 1994-2004.
[84] Y. Leng, X. Lin, L. Yang, Y. Xu, C. Fu, Design of an elastically suspended backpack with tunable stiffness, in: 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM), IEEE, 2020, pp. 359-363.
[85] Y. Leng, X. Lin, R. Deng, J. Chang, L. Yang, K. Zhang, C. Fu, Design and Implement an Elastically Suspended Back Frame for Reducing the Burden of Carrier, in: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), IEEE, 2021, pp. 236-240.
[86] T. Li, Q. Li, T. Liu, J. Yi, G. Gong, Development of a novel elastic load-carrying device: Design, modeling and analysis, in: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2016, pp. 1454-1460.
[87] J.-P. Martin, Q. Li, Altering compliance of a load carriage device in the medial-lateral direction reduces peak forces while walking, Scientific Reports, 8(1) (2018) 13775.
[88] J.-H. Park, P. Stegall, H. Zhang, S. Agrawal, Walking with aBackpack using load distribution and dynamic load compensation reduces metabolic cost and adaptations to loads, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(9) (2016) 1419-1430.
[89] L.C. Rome, L. Flynn, T.D. Yoo, Rubber bands reduce the cost of carrying loads, Nature, 444(7122) (2006) 1023-1024.
[90] C. Pérez-Cualtán, O. Campo, Design of a load carriage system oriented to reduce acceleration forces when carrying a backpack, Revista Facultad de Ingeniería Universidad de Antioquia, (2019).
[91] S.A. Gard, S.C. Miff, A.D. Kuo, Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking, Human movement science, 22(6) (2004) 597-610.
[92] Z. Yang, L. Huang, Z. Zeng, R. Wang, R. Hu, L. Xie, Evaluation of the load reduction performance via a suspended backpack with adjustable stiffness, Journal of Biomechanical Engineering, 144(5) (2022) 051001.
[93] J.-P. Martin, Q. Li, Design, model, and performance evaluation of a biomechanical energy harvesting backpack, Mechanical Systems and Signal Processing, 134 (2019) 106318.
[94] W. Van Dijk, T. Van de Wijdeven, M. Holscher, R. Barents, R. Könemann, F. Krause, C.L. Koerhuis, Exobuddy-A non-anthropomorphic quasi-passive exoskeleton for load carrying assistance, in: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), IEEE, 2018, pp. 336-341.
[95] K.M. Gruevski, I.J. Cameron, C. McGuinness, A. Sy, K.L. Best, L. Bouyer, G. Diamond-Ouellette, R.B. Graham, T. Karakolis, A pilot investigation of the influence of a passive military exoskeleton on the performance of lab-simulated operational tasks, IISE transactions on occupational ergonomics and human factors, 8(4) (2020) 195-203.
[96] M. Hao, J. Zhang, K. Chen, H. Asada, C. Fu, Supernumerary robotic limbs to assist human walking with load carriage, Journal of Mechanisms and Robotics, 12(6) (2020) 061014.
[97] H. Kazerooni, A. Chu, R. Steger, That which does not stabilize, will only make us stronger, The International Journal of Robotics Research, 26(1) (2007) 75-89.
[98] I. Ketko, R. Yanovich, M. Plotnik, A. Gefen, Y. Heled, Physiological Evaluation of a Wheeled Assistive Device for Load Carriage, The Journal of Strength & Conditioning Research, 29 (2015) S139-S143.
[99] Y. Leng, X. Lin, G. Huang, M. Hao, J. Wu, Y. Xiang, K. Zhang, C. Fu, Wheel-legged robotic limb to assist human with load carriage: An application for environmental disinfection during COVID-19, IEEE Robotics and Automation Letters, 6(2) (2021) 3695-3702.
[100] J. Liu, B. Li, Q. Ning, M. Zhou, Y. Li, M. Liu, K. Xu, Mechanical design of a passive lower-limb exoskeleton for load-carrying assistance, in: Journal of Physics: Conference Series, IOP Publishing, 2022, pp. 012035.
[101] K. Low, X. Liu, H. Yu, Design and implementation of NTU wearable exoskeleton as an enhancement and assistive device, Applied Bionics and Biomechanics, 3(3) (2006) 209-225.
[102] T. Wang, Y. Zhu, T. Zheng, D. Sui, S. Zhao, J. Zhao, PALExo: A parallel actuated lower limb exoskeleton for high-load carrying, IEEE Access, 8 (2020) 67250-67262.
[103] Z. Zhou, W. Chen, H. Fu, X. Fang, C. Xiong, Design and experimental evaluation of a non-anthropomorphic passive load-carrying exoskeleton, in: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), IEEE, 2021, pp. 251-256.
[104] M. Hao, J. Zhang, K. Chen, H. Asada, C. Fu, Supernumerary Robotic Limbs to Assist Human Walking With Load Carriage, Journal of Mechanisms and Robotics, 12(6) (2020).
[105] I. Ketko, M. Plotnik, R. Yanovich, A. Gefen, Y. Heled, Wheeled assistive device for load carriage–the effects on human gait and biomechanics, Ergonomics, 60(10) (2017) 1415-1424.
[106] Y. Xiang, X. Yan, H. Su, N. Chen, S. Guo, J. Wu, Y. Leng, C. Fu, Powered super tail: A terrain-adaptive wheel-legged robotic limb to assist human’s load carriage, in: 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), IEEE, 2021, pp. 676-681.
[107] G.M. Bryan, P.W. Franks, S. Song, A.S. Voloshina, R. Reyes, M.P. O’Donovan, K.N. Gregorczyk, S.H. Collins, Optimized hip–knee–ankle exoskeleton assistance at a range of walking speeds, Journal of neuroengineering and rehabilitation, 18 (2021) 1-12.
[108] Q. Chen, S. Guo, L. Sun, Q. Liu, S. Jin, Inertial measurement unit-based optimization control of a soft exosuit for hip extension and flexion assistance, Journal of Mechanisms and Robotics, 13(2) (2021) 021016.
[109] Y. Ding, I. Galiana, A.T. Asbeck, S.M.M. De Rossi, J. Bae, T.R.T. Santos, V.L. De Araujo, S. Lee, K.G. Holt, C. Walsh, Biomechanical and physiological evaluation of multi-joint assistance with soft exosuits, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(2) (2016) 119-130.
[110] Y. Ding, F.A. Panizzolo, C. Siviy, P. Malcolm, I. Galiana, K.G. Holt, C.J. Walsh, Effect of timing of hip extension assistance during loaded walking with a soft exosuit, Journal of neuroengineering and rehabilitation, 13 (2016) 1-10.
[111] S. Galle, P. Malcolm, W. Derave, D. De Clercq, Enhancing performance during inclined loaded walking with a powered ankle–foot exoskeleton, European Journal of Applied Physiology, 114 (2014) 2341-2351.
[112] S. Lee, J. Kim, L. Baker, A. Long, N. Karavas, N. Menard, I. Galiana, C.J. Walsh, Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking, Journal of neuroengineering and rehabilitation, 15 (2018) 1-9.
[113] M.K. MacLean, D.P. Ferris, Energetics of walking with a robotic knee exoskeleton, Journal of applied biomechanics, 35(5) (2019) 320-326.
[114] F.A. Panizzolo, G.M. Freisinger, N. Karavas, A.M. Eckert-Erdheim, C. Siviy, A. Long, R.A. Zifchock, M.E. LaFiandra, C.J. Walsh, Metabolic cost adaptations during training with a soft exosuit assisting the hip joint, Scientific reports, 9(1) (2019) 9779.
[115] J.E. Pratt, B.T. Krupp, C.J. Morse, S.H. Collins, The RoboKnee: an exoskeleton for enhancing strength and endurance during walking, in: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004, IEEE, 2004, pp. 2430-2435.
[116] L. Xie, Z. Wang, G. Huang, B. Liu, Z. Zhou, Mechanical Efficiency Investigation of an Ankle-Assisted Robot for Human Walking With a Backpack-Load, Journal of Biomechanical Engineering, 143(11) (2021).
[117] L.M. Mooney, E.J. Rouse, H.M. Herr, Autonomous exoskeleton reduces metabolic cost of human walking during load carriage, Journal of neuroengineering and rehabilitation, 11 (2014) 1-11.
[118] P.W. Franks, G.M. Bryan, R. Reyes, M.P. O’Donovan, K.N. Gregorczyk, S.H. Collins, The effects of incline level on optimized lower-limb exoskeleton assistance: A case series, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30 (2022) 2494-2505.
[119] O. Baser, H. Kizilhan, E. Kilic, Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41 (2019) 1-15.
[120] H. Cao, J. Zhu, C. Xia, H. Zhou, X. Chen, Y. Wang, Design and control of a hydraulic-actuated leg exoskeleton for load-carrying augmentation, in: Intelligent Robotics and Applications: Third International Conference, ICIRA 2010, Shanghai, China, November 10-12, 2010. Proceedings, Part I 3, Springer, 2010, pp. 590-599.
[121] D. Cha, K.I. Kim, A lower limb exoskeleton based on recognition of lower limb walking intention, Transactions of the Canadian Society for Mechanical Engineering, 43(1) (2018) 102-111.
[122] Y. Hua, J. Fan, G. Liu, X. Zhang, M. Lai, M. Li, T. Zheng, G. Zhang, J. Zhao, Y. Zhu, A novel weight-bearing lower limb exoskeleton based on motion intention prediction and locomotion state identification, IEEE Access, 7 (2019) 37620-37638.
[123] D.J. Hyun, H. Park, T. Ha, S. Park, K. Jung, Biomechanical design of an agile, electricity-powered lower-limb exoskeleton for weight-bearing assistance, Robotics and Autonomous Systems, 95 (2017) 181-195.
[124] H. Li, W. Cheng, F. Liu, M. Zhang, K. Wang, The effects on muscle activity and discomfort of varying load carriage with and without an augmentation exoskeleton, Applied Sciences, 8(12) (2018) 2638.
[125] Y. Long, Z.-j. Du, C.-f. Chen, W.-d. Wang, L. He, X.-w. Mao, G.-q. Xu, G.-y. Zhao, W. Dong, Hybrid Control Scheme of a Hydraulically Actuated Lower Extremity Exoskeleton for Load-Carrying, Journal of Intelligent & Robotic Systems, 91(3) (2018) 493-500.
[126] H.T. Tran, H. Cheng, H. Rui, X. Lin, M.K. Duong, Q. Chen, Evaluation of a Fuzzy-Based Impedance Control Strategy on a Powered Lower Exoskeleton, International Journal of Social Robotics, 8(1) (2016) 103-123.
[127] S. Yu, H. Lee, W. Kim, C. Han, Development of an underactuated exoskeleton for effective walking and load-carrying assist, Advanced Robotics, 30(8) (2016) 535-551.
[128] C. Zhang, X. Zang, Z. Leng, H. Yu, J. Zhao, Y. Zhu, Human–machine force interaction design and control for the HIT load-carrying exoskeleton, Advances in Mechanical Engineering, 8(4) (2016) 1687814016645068.
[129] K.N. Gregorczyk, L. Hasselquist, J.M. Schiffman, C.K. Bensel, J.P. Obusek, D.J. Gutekunst, Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage, Ergonomics, 53(10) (2010) 1263-1275.
[130] Y. Long, Z.-j. Du, C.-f. Chen, W.-d. Wang, L. He, X.-w. Mao, G.-q. Xu, G.-y. Zhao, W. Dong, Hybrid control scheme of a hydraulically actuated lower extremity exoskeleton for load-carrying, Journal of Intelligent & Robotic Systems, 91 (2018) 493-500.
[131] D. Lim, W. Kim, H. Lee, H. Kim, K. Shin, T. Park, J. Lee, C. Han, Development of a lower extremity exoskeleton robot with a quasi-anthropomorphic design approach for load carriage, in: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2015, pp. 5345-5350.
[132] H.T. Tran, H. Cheng, H. Rui, X. Lin, M.K. Duong, Q. Chen, Evaluation of a fuzzy-based impedance control strategy on a powered lower exoskeleton, International Journal of Social Robotics, 8 (2016) 103-123.
[133] T.G. Hornby, D.S. Reisman, I.G. Ward, P.L. Scheets, A. Miller, D. Haddad, E.J. Fox, N.E. Fritz, K. Hawkins, C.E. Henderson, Clinical practice guideline to improve locomotor function following chronic stroke, incomplete spinal cord injury, and brain injury, Journal of Neurologic Physical Therapy, 44(1) (2020) 49-100.