[1] D. Tabor, A simple theory of static and dynamic hardness, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 192(1029) (1948) 247-274.
[2] I.N. Sneddon, Boussinesq's problem for a rigid cone, in: Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 1948, pp. 492-507.
[3] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, 7(6) (1992) 1564-1583.
[4] G. Pharr, W.C. Oliver, F.J.J.o.m.r. Brotzen, On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation, 7 (1992) 613-617.
[5] H.A. Francis, Phenomenological Analysis of Plastic Spherical Indentation, Journal of Engineering Materials and Technology, 98(3) (1976) 272-281.
[6] N.A. Stilwell, D. Tabor, Elastic Recovery of Conical Indentations, Proceedings of the Physical Society, 78(2) (1961) 169.
[7] S. Bulychev, V. Alekhin, M. Shorshorov, A. Ternovskii, G. Shnyrev, Determining Young's modulus from the indentor penetration diagram, Ind. Lab., 41(9) (1975) 1409-1412.
[8] B. Taljat, T. Zacharia, F.M. Haggag, Analysis of ball-indentation load-depth data: Part I. Determining elastic modulus, Journal of Materials Research, 12(4) (1997) 965-974.
[9] G. Das, S. Ghosh, S. Sahay, V. Ranganath, K. Vaze, Influence of pre-straining on mechanical properties of HSLA steel by using ball indentation technique, International Journal of Materials Research, 95(12) (2022) 1120-1127.
[10] B. Zou, Z. Wei, K. Guan, Fature toughness valuation of seel by continuous ball indentation test, Journal of Materials Science and Engineering, 34(4) (2016) 577-580.
[11] R. Pamnani, V. Karthik, T. Jayakumar, M. Vasudevan, T. Sakthivel, Evaluation of mechanical properties across micro alloyed HSLA steel weld joints using Automated Ball Indentation, Materials Science and Engineering: A, 651 (2016) 214-223.
[12] H. Xue, J. He, J. Zhang, Y. Xue, Approach for Obtaining Material Mechanical Properties in Local Region of Structure Based on Accurate Analysis of Micro-indentation Test, Chinese Journal of Mechanical Engineering, 34(1) (2021) 130.
[13] T.-H. Pham, J.J. Kim, S.-E. Kim, Estimating constitutive equation of structural steel using indentation, International Journal of Mechanical Sciences, 90 (2015) 151-161.
[14] M. Miyabe, M. Iyota, S. Okano, M. Mochizuki, Semi-destructive Method for Evaluation of Local Mechanical Properties in the Notch-Tip Region using an Indentation Technique, Quarterly Journal of the Japan Welding Society, 31(4) (2013) 114s-118s.
[15] J.-H. Ahn, D. Kwon, Derivation of plastic stress–strain relationship from ball indentations: Examination of strain definition and pileup effect, Journal of Materials Research, 16(11) (2001) 3170-3178.
[16] S. Suresh, A.E. Giannakopoulos, A new method for estimating residual stresses by instrumented sharp indentation, Acta Materialia, 46(16) (1998) 5755-5767.
[17] H. Peng, Y. Xia, Z. Zhou, Y. Jiang, Q. Yu, Residual stress evaluation by spherical indentation: Analysis of the asymmetry of load–depth curves, International Journal of Solids and Structures, 249 (2022) 111772.
[18] S.S. Ghanbari, A.-H. Mahmoudi, Application of a portable indentation rig with Rockwell indenter to determine mechanical properties and residual stresses on an aluminum plate, The Journal of Strain Analysis for Engineering Design, 55(7-8) (2020) 246-257.
[19] F. Barati, R. Moharrami, Accurate Estimating of Mechanical Properties of Austenitic Stainless Steels with Residual Stresses Using Indentation Technique, AUT Journal of Mechanical Engineering, 6(4) (2022) 511-524.
[20] G. Yao, Z. Liu, H.J.A.S. Ma, A novel method for predicting residual stress in GH4169 machined surfaces through micro-hardness measurement, 13(24) (2023) 13257.
[21] J.S. Field, M.V. Swain, Determining the mechanical properties of small volumes of material from submicrometer spherical indentations, Journal of Materials Research, 10(1) (1995) 101-112.
[22] M.F. Doerner, W.D. Nix, A method for interpreting the data from depth-sensing indentation instruments, Journal of Materials Research, 1(4) (1986) 601-609.
[23] A. Norbury, T. Samuel, The recovery and sinking-in or piling-up of material in the Brinell test, and the effects of these factors on the correlation of the Brinell with certain other hardness tests, J. Iron Steel Inst, 117 (1928) 673-687.
[24] J.R. Matthews, Indentation hardness and hot pressing, Acta Metallurgica, 28(3) (1980) 311-318.
[25] R. Hill, On a class of constitutive relations for nonlinear infinitesimal elasticity, Journal of the Mechanics and Physics of Solids, 35(5) (1987) 565-576.
[26] E. Meyer, Z.J.Z.D.V.D.I. Ver, Contribution to the knowledge of hardness and hardness testing, 52 (1908) 740-835.
[27] H.J.P.o.t.I.o.M.E. O'Neill, The significance of tensile and other mechanical test properties of metals, 151(1) (1944) 116-146.
[28] K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.