مدلسازی و تحلیل ناپایداری‌های آیروالاستیک در هواپیمای کامل انعطاف‌پذیر با استفاده از فرمول‌بندی شبه‌مختصات و مدل آیرودینامیکی حداقل متغیر حالت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی هوافضا، دانشگاه مالک اشتر، تهران، ایران

2 دانشکده مهندسی هوافضا، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران

چکیده

هدف در کار حاضر ارائه‌ی یک مدل تحلیلی از هواپیمای انعطاف­‌پذیر کامل می‌­باشد که بتواند اثر مودهای دینامیک پرواز را در ناپایداری­‌های آیروالاستیک مورد بررسی قرار دهد. مدل پیشنهادی بر پایه‌ی دستگاه شبه‌مختصات استخراج شده و در آن، هواپیما به‌ عنوان یک سازه‌ی چندجزئی انعطاف‌پذیر شامل بدنه، بال‌ها و دم‌ها مدل می ­شود. نیروهای آیرودینامیکی وارد بر بال و دم با استفاده از روش حداقل متغیر حالت مدل­سازی می­شوند. این مدل انواع ناپایداری‌های آیروالاستیکی نظیر فلاتر جسم آزاد مود تناوب کوتاه و مود رول، فلاتر متقارن و پادمتقارن بال را شناسایی می­‌کند. نتایج حاصل از تحلیل‌ها نشان می‌دهد که تنها فلاترهای پادمتقارن بال و مود رول تحت تأثیر ممان اینرسی رول قرار دارند؛ به‌طوری‌که با افزایش ممان اینرسی رول، سرعت فلاتر در هر دو پدیده افزایش می‌یابد. از سوی دیگر ممان اینرسی پیچ و جرم در مود پلانج بر فلاتر متقارن بال و فلاتر جسم آزاد مود تناوب کوتاه مؤثر هستند. افزایش ممان اینرسی مود پیچ منجر به کاهش سرعت فلاتر بال متقارن و در مقابل، افزایش سرعت فلاتر جسم آزاد مود تناوب کوتاه می‌شود. همچنین، افزایش جرم در مود پلانج باعث افزایش سرعت فلاتر در هر دو پدیده فلاتر بال متقارن و فلاتر جسم آزاد مود تناوب کوتاه می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and Analysis of Aeroelastic Instabilities in a Flexible Full Aircraft Using Quasi-Coordinate Formulation and Minimum State Aerodynamic Model

نویسندگان [English]

  • Salman Shafaghat 1
  • Mohammadali Noorian 2
1 Faculty of Aerospace Engineering, Malek-Ashtar University of Technology
2 Aerospace Facutly,, K N Toosi University of Technology
چکیده [English]

The present study aims to develop an analytical model of a fully flexible aircraft capable of capturing the influence of flight dynamic modes on aeroelastic instabilities. The proposed formulation is based on the quasi-coordinate framework, wherein the aircraft is modeled as a multi-component flexible structure comprising the fuselage, wings, and tails. The aerodynamic forces acting on the wings and tails are modeled using the minimum state method. The model identifies various types of aeroelastic instabilities, including short-period and roll body-freedom flutter, as well as symmetric and antisymmetric wing flutter. The results indicate that only antisymmetric wing flutter and roll-mode body-freedom flutter are significantly influenced by roll moment of inertia, such that increasing the roll inertia raises the flutter velocity in both phenomena. Conversely, pitch moment of inertia and plunging mass predominantly affect symmetric wing flutter and short-period body-freedom flutter. Specifically, an increase in pitch inertia reduces the symmetric wing flutter velocity but increases the short-period body-freedom flutter velocity. Additionally, increasing the plunging mass elevates the flutter velocity for both symmetric wing and short-period body-freedom modes.

کلیدواژه‌ها [English]

  • Flexible Aircraft
  • Quasi-Coordinate Formulation
  • Minimum State Variable Method
  • Wing Flutter
  • Body Freedom Flutter
  • Effects of Flight Dynamic Modes
[1] B Raghavan, M. J. Patil, Flight dynamics of high aspect-ratio flying wings: effect of large trim deformation, Journal of Aircraft, 46(5) (2009) 1808-1812.
 [2] S. Shafaghat, M. Noorian, and S. Irani, Body Freedom Flutter Suppression Using LQR Controller, Journal of Vibration and Sound 13(25) (2024) 50-64 (in Persian).
  [3] M. Borhanpanah, R. D. Firouz-Abadi, Developing an Aero-Elastic Model of a Full Aircraft to Study the Effect of Flexibility on its Flight Dynamics Derivatives, Modares Mechanical Engineering, 19(10) (2019) 2511-2521 (in Persian).
 [4] J. masrour, S. h. sadati, M. Shahravi, Gust Response Analysis of Flexible Aircraft, 52(1) (2020) 97-108 (in Persian).
 [5] S. Shafaghat, M Noorian and S Irani, Nonlinear body-freedom flutter analysis in aircraft with the flexible wing, (2022) 191-204 (in Persian).
[6] I. Tuzcu, and T.N. Nhan, Modelling Dynamics of Highly Flexible Aircraft Using a Geometrically Nonlinear Structural Model, AIAA SCITECH 2025 Forum, (2025) 1020.
 [7] L. Meirovitch, and I. Tuzcu, Integrated Approach to Flight Dynamics and Aeroservoelasticity of Whole Flexible Aircraft-Part I: System Modeling, AIAA Guidance, Navigation, and Control Conference and Exhibit, (2002) 4747.
 [8] L. Meirovitch and I. Tuzcu, Integrated Approach to Flight Dynamics and Aeroservoelasticity of Whole Flexible Aircraft-Part I: System Modeling, AIAA Guidance, Navigation, and Control Conference and Exhibit, (2002) 4747.
 [9] N. Nhan, Integrated flight dynamic modeling of flexible aircraft with inertial force-propulsion-aeroelastic coupling, 46th AIAA aerospace sciences meeting and exhibit, (2008) 194.
 [10] N. Nhan, and I. Tuzcu, Flight dynamics of flexible aircraft with aeroelastic and inertial force interactions." AIAA atmospheric flight mechanics conference, 208 (2009) 109375.
 [11] I. Tuzcu, and N. Nhan, Unsteady aeroelasticity of generic transport model, AIAA Atmospheric Flight Mechanics Conference, (2011) 6319.
[12] Z. Sotoudeh, D. H. Hodges, and Chong-Seok Chang, Validation studies for aeroelastic trim and stability of highly flexible aircraft, Journal of Aircraft 47(4) (2010) 1240-1247.
[13] P. Mardanpour, D. H. Hodges, R. Neuhart, and N. Graybeal, Engine placement effect on nonlinear trim and stability of flying wing aircraft, Journal of Aircraft 50(6) (2013) 1716-1725.
 [14] S. Haghighat, Multidisciplinary design optimization of a highly flexible aeroservoelastic wing, University of Toronto (Canada), (2012).
 [15] R. Palacios,J. Murua and R. Cook, Structural and aerodynamic models in nonlinear flight dynamics of very flexible aircraft, AIAA journal, 48(11) (2010)  2648-2659.
 [16] M. Wuestenhagen, T. Kier, YM. Meddaikar, M. Pusch, D. Ossmann, A. Hermanutz, Aeroservoelastic modeling and analysis of a highly flexible flutter demonstrator. In 2018 atmospheric flight mechanics conference, (2018) 3150.
 [17] F. Saltari, C. Riso, G. Matteis, D. Mastroddi, Finite-element-based modeling for flight dynamics and aeroelasticity of flexible aircraft, Journal of Aircraft 54(6) (2017)  2350-2366.
[18] W. Su, CE. Cesnik, Nonlinear aeroelasticity of a very flexible blended-wing-body aircraft,  Journal of Aircraft, 47(5) (2010) 1539-1553.
 [19] D. K. Schmidt, Z. Wei, and K. Rakesh, Flight-dynamics and flutter modeling and analyses of a flexible flying-wing drone-invited, AIAA Atmospheric Flight Mechanics Conference, (2016) 1748.
[20] D. K. Schmidt, Stability augmentation and active flutter suppression of a flexible flying-wing drone, Journal of Guidance, Control, and Dynamics 39(3) (2016) 409-422.
 
[21] D. K. Schmidt, B. P. Danowsky, A. Kotikalpudi, J. Theis, Ch. D. Regan, P. J. Seiler, R. K. Kapania, Modeling, design, and flight testing of three flutter controllers for a flying-wing drone,  Journal of Aircraft, 57( 4) (2020) 615-634.
[22] L. Meirovitch, Leonard, I. Tuzcu, The lure of the mean axes, (2007) 497-504.
[23] H. Abbasi, P. Grant, N. Li, Real-time simulation of flexible aircraft: a comparison of two methods, In AIAA Modeling and Simulation Technologies Conference, (2012) 6024.
[24] N. Li, P. Grant, H. Abbasi, A comparison of the fixed-axes and the mean-axes modeling methods for flexible aircraft simulation In AIAA Modeling and Simulation Technologies Conference, (2010), 7605.
[25] D. K. Schmidt, Discussion: The Lure of the Mean Axes, (Meirovitch, L., and Tuzcu, I., ASME J. Appl. Mech., 74 (3), Journal of Applied Mechanics, 82(12) (2015) 497–504.
[26] M. Karpel, Design for active and passive flutter suppression and gust alleviation, Stanford University, (1980).
[27]  A. Iannelli, A. Marcos, M. Lowenberg, Study of flexible aircraft body freedom flutter with robustness tools, Journal of Guidance, Control, and Dynamics 41(5) (2018) 1083-1094.
[28] S. Shafaghat, M. A. Noorian, S. Irani, Nonlinear aeroelastic analysis of a HALE aircraft with flexible components, Aerospace Science and Technology 127 (2022) 107663.
[29] D. Tang, E. H. Dowell, Effects of a free-to-roll fuselage on wing flutter: theory and experiment, AIAA journal 52(12) (2014) 2625-2632.