بررسی عددی اغتشاشات صوتی ایرفویل نوسانی NACA0012 مجهز به دندانه مثلثی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی هوافضا، دانشگاه صنعتی امیرکبیر، تهران، ایران.

چکیده

نویز آیرودینامیکیِ ناشی از ایرفویل‌ها به دلیل آثار مخرب بر شنوایی و کارآیی وسایل نقلیه و توربین‌های باد، مسئله‌ای جدی برای صنعت است. این نویز، که از تغییرات هندسی، گردابه‌ها و جدایش جریان سرچشمه می‌گیرد، می‌تواند با افزودن دندانه‌های مثلثی به لبه‌ فرار کاهش یابد. در این پژوهش رفتار ایرفویل نوسانی ناکا 0012 با دامنه 10 درجه و بسامد 5 تا 25 هرتز حول مرکز آیرودینامیکی به روش عددی ارزیابی شد. میدان جریان با معادلات ناویر-استوکس میانگین‌گیری‌شده‌ی رینولدز و مدل آشفتگی kω SST حل شد. همچنین میدان صوتی پیرامون ایرفویل با الگوریتم فاکس-ویلیامز و هاوکینگز استخراج گردید؛ ویژگی‌های هواصوتی نظیر سطح فشار صوت و چگالی توان صوتی در فواصل مختلف از انتهای لبه فرار ایرفویل ثبت شدند. نتایج نشان داد که دندانه‌های مثلثی، با شکستن گردابه‌های بزرگ جریان و تبدیل آن‌ها به گردابه‌های کوچک‌تر، به‌طور میانگین 4/58 دسی‌بل از 51/18 دسی‌بل، یعنی 8/95درصد نویز ناشی از گردابه‌ها را کاهش دادند. این افت با تضعیف گردابه‌های غالب، کاهش نوسانات سرعت و القای اختلاف فاز در تابش امواج صوتی همراه بود و در نهایت، با تغییر ساختار آشفتگی دنباله، انتشار انرژی صوتی را محدود کرده و عملکرد آیرواکوستیکی را بهبود بخشیده‌ است. تأثیر کاهش نویز وابسته به فرکانس نوسان ایرفویل است، به‌طوری‌که دندانه در فرکانس‌های پایین‌ کارایی بیشتری داشته اما در فرکانس‌های بالاتر به دلیل ناپایداری‌های شدیدتر جریان، اثربخشی آن کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Numerical Study on Pitching NACA0012 Airfoils with Saw-Tooth Serration

نویسندگان [English]

  • Mohammad Mostofi
  • Rojin Shokri Khanghah
  • Sahar Noori
Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

Aerodynamic noise generated by airfoils poses a serious industrial challenge because of its detrimental impact on human hearing and on the performance of vehicles and wind turbines. This noise rooted in geometric parameters, vortex shedding and flow separation can be mitigated by mounting triangular serrations on the trailing edge. In the present study, the aeroacoustic behaviour of an oscillating NACA 0012 airfoil with a ±10° pitching amplitude and oscillation frequencies between 5 and 25 Hz about its aerodynamic centre was evaluated numerically. The flow field was solved with the Unsteady Reynolds-averaged Navier–Stokes equations with the k-ω SST turbulence model, while the surrounding acoustic field was predicted through the Ffowcs Williams–Hawkings (FW-H) acoustic analogy. Acoustic metrics, including sound pressure level and power spectral density, were recorded at several downstream positions from the trailing edge. Results demonstrate that the serrations fragmented large-scale vortices into smaller structures and, on average, lowered vortex-induced noise by 4.58 dB from 51.18 dB, equivalent to a 8.95% reduction. This attenuation is attributed to weakened dominant vortices, reduced velocity fluctuations, and creating phase shifts in acoustic wave propagation, which collectively suppress wake turbulence and limit acoustic energy propagation, thereby enhancing aeroacoustic performance. The effectiveness of serrations was frequency dependent, exhibiting greater efficacy at lower oscillation frequencies and reduced effectiveness at higher frequencies due to intensified flow instabilities.

کلیدواژه‌ها [English]

  • Oscillating Pitching Airfoil
  • Aeroacoustic Noise
  • Triangular Serrations
  • Frequency Analysis
[1] J.W. Jaworski, N. Peake, Aeroacoustics of silent owl flight, Annual Review of Fluid Mechanics, 52(1) (2020) 395-420.
[2] D. Li, X. Liu, F. Hu, L. Wang, Effect of trailing-edge serrations on noise reduction in a coupled bionic aerofoil inspired by barn owls, Bioinspiration & biomimetics, 15(1) (2019) 016009.
[3] S.W. Rienstra, A. Hirschberg, An introduction to acoustics,  (2004).
[4] S. Deshmukh, S. Bhattacharya, A. Jain, A.R. Paul, Wind turbine noise and its mitigation techniques: A review, Energy Procedia, 160 (2019) 633-640.
[5] T. Zhou, Y. Sun, R. Fattah, X. Zhang, X. Huang, An experimental study of trailing edge noise from a pitching airfoil, The Journal of the Acoustical Society of America, 145(4) (2019) 2009-2021.
[6] L. Huang, G. Huang, R. LeBeau, T. Hauser, Optimization of blowing and suction control on NACA0012 airfoil using genetic algorithm, in:  42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004, pp. 225.
[7] S. Hasheminasab, S. Karimian, S. Noori, M. Saeedi, C. Morton, Experimental investigation of the wake dynamics for a NACA0012 airfoil with a cut-in serrated trailing-edge, Physics of Fluids, 33(5) (2021).
[8] A. Afshari, A. Dehghan, M. Dehghani Mohammad-abadi, M. Dehghan Manshad, Semi-empirical Investigation of the effect of finlet on the turbulent boundary layer trailing edge noise, Modares Mechanical Engineering, 20(8) (2020) 1951-1965.
[9] F. Gstrein, N. Zang, M. Azarpeyvand, Application of Finlets for Trailing Edge Noise Reduction of a NACA 0012 Airfoil, in:  AIAA AVIATION 2020 FORUM, 2020, pp. 2502.
[10] H.T. Cen, J.L. Liu, Bionic Design Review of wind turbine blades, Advanced Materials Research, 512 (2012) 599-603.
[11] H. Cao, M. Zhang, Y. Zhang, T. Zhou, A general model for trailing edge serrations simulation on wind turbine airfoils, Theoretical and Applied Mechanics Letters, 11(4) (2021) 100284.
[12] A.-G. Totu, G. Cican, D.-E. Crunțeanu, Serrations as a Passive Solution for Turbomachinery Noise Reduction, Aerospace, 11(4) (2024) 292.
[13] M.R. Ramli, W.M.W. Mohamed, H. Yusoff, M.A. Ismail, A.A. Mansor, A. Hussin, A.F.M. Yamin, The Aerodynamic Characteristics Investigation on NACA 0012 Airfoil with Owl’s Wing Serrations for Future Air Vehicle, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 102(1) (2023) 171-183.
[14] S. Lee, S. Lee, Wind turbine noise reduction by means of serrated trailing edges, in:  INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Institute of Noise Control Engineering, 2012, pp. 2283-2288.
[15] X. Yu, J. Zhou, Y. Li, Noise control in tandem airfoil configurations using leading-edge serrations on the front airfoil, Experiments in Fluids, 66(5) (2025) 1-17.
[16] F. Avallone, W. Van Der Velden, D. Ragni, D. Casalino, Noise reduction mechanisms of sawtooth and combed-sawtooth trailing-edge serrations, Journal of Fluid Mechanics, 848 (2018) 560-591.
[17] J. Mathew, A. Singh, J. Madsen, C.A. León, Serration design methodology for wind turbine noise reduction, in:  Journal of Physics: Conference Series, IOP Publishing, 2016, pp. 022019.
[18] J. Nedić, J.C. Vassilicos, Vortex shedding and aerodynamic performance of airfoil with multiscale trailing-edge modifications, AIAA Journal, 53(11) (2015) 3240-3250.
[19] P. Kholodov, S. Moreau, Optimization of trailing-edge serrations with and without slits for broadband noise reduction, Journal of Sound and Vibration, 490 (2021) 115736.
[20] X. Liu, H. Kamliya Jawahar, M. Azarpeyvand, R. Theunissen, Aerodynamic performance and wake development of airfoils with serrated trailing-edges, AIAA Journal, 55(11) (2017) 3669-3680.
[21] X. Liu, H. Kamliya Jawahar, M. Azarpeyvand, R. Theunissen, Wake development of airfoils with serrated trailing edges, in:  22nd AIAA/CEAS Aeroacoustics Conference, 2016, pp. 2817.
[22] C. Jiang, J.R. Fischer, D. Moreau, C.J. Doolan, Experimental investigation of novel porous-serrated treatments on airfoil trailing edge noise reduction, in:  25th AIAA/CEAS aeroacoustics conference, 2019, pp. 2435.
[23] U. Hussain, S.U. Malook, B. Shabir, O. Ali, S.M. Ahmad, Effect of trailing edge serration on the lift and drag characteristics of NACA0012 airfoil wing, in:  35th AIAA applied aerodynamics conference, 2017, pp. 4470.
[24] L. Jones, R. Sandberg, Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations, Journal of Fluid Mechanics, 706 (2012) 295-322.
[25] N. Thomareis, G. Papadakis, Effect of trailing edge shape on the separated flow characteristics around an airfoil at low Reynolds number: A numerical study, Physics of Fluids, 29(1) (2017).
[26] B. Al Tlua, J. Rocha, Experimental investigation of NACA-0012 airfoil instability noise with sawtooth trailing edges, Wind Engineering, 46(3) (2022) 972-982.
[27] B. Al Tlua, R. Joana, Optimization and testing of flat-plate trailing-edge serration geometry for reducing airfoil self-noise, Canadian Acoustics, 48(4) (2020) 7-18.
[28] T.P. Chong, E. Dubois, Optimization of the poro-serrated trailing edges for airfoil broadband noise reduction, The Journal of the Acoustical Society of America, 140(2) (2016) 1361-1373.
[29] A. Vathylakis, T.P. Chong, P.F. Joseph, Poro-serrated trailing-edge devices for airfoil self-noise reduction, AIAA journal, 53(11) (2015) 3379-3394.
[30] S.B. Pope, Turbulent Flows, Cambridge University Press, 2000.
[31] D. Wilcox, Turbulence Modeling for CFD, DCW industries, La Canada,  (1998).
[32] T. Zhou, X. Zhang, S. Zhong, An experimental study of trailing edge noise from a heaving airfoil, The Journal of the Acoustical Society of America, 147(6) (2020) 4020-4031.
[33] Chapter 22: Predicting Aerodynamically Generated Noise, in, ANSYS Fluent Theory Guide, 2019 R2.
[34] E. Molatudi, T.J. Kunene, L.K. Tartibu, A Ffowcs Williams-Hawkings numerical aeroacoustic study of varied and fixed-pitch blades of an H-Rotor vertical axis wind turbine, in:  MATEC Web of Conferences, EDP Sciences, 2021, pp. 00013.
[35] H. Kuttruff, Acoustics: an introduction, CRC Press, 2007.
[36] A. Aihara, A. Goude, H. Bernhoff, Numerical prediction of noise generated from airfoil in stall using LES and acoustic analogy, Noise & Vibration Worldwide, 52(10) (2021) 295-305.
[37] Chapter 7: Physical Properties, in, ANSYS Fluent User's Guide, 2019 R2.
[38] R. Shokri Khanghah, M. Mani, Experimental investigation of acoustic noise produced in different types of vertical axis wind turbines, Experimental, Amirkabir University of Technology  (Tehran Polytechnic), September, 2021. (in Persian).