تحلیل ترمودینامیکی - اقتصادی سامانه چندمنظوره بازیافت گاز فلر همراه با پیشگرمایش نفت خام

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

چکیده

گاز فلر، محصول جانبی استخراج نفت، معمولاً بدون استفاده مفید سوزانده می‌شود درحالی که ظرفیت بالایی برای بازیافت انرژی دارد. در این پژوهش به طراحی و تحلیل یک سامانه چندمنظوره برای استفاده از گاز فلر در تولید هم‌زمان توان، آب شیرین، هیدروژن و حرارت پرداخته شده است. سامانه پیشنهادی شامل چرخه توان کربن‌دی‌اکسید فوق‌بحرانی، مولد ترموالکتریک، پیش‌گرمایش نفت خام، واحد نمک‌زدایی اسمز معکوس و تولید هیدروژن در الکترولایزر غشای تبادل پروتون است. مدل‌سازی با نرم‌افزار حلگر معادلات مهندسی انجام و با تحلیل‌های انرژی، اگزرژی و اگزرژی-اقتصادی ارزیابی شده است. نوآوری پژوهش ارائه سامانه‌ای یکپارچه بوده که با استفاده از گاز فلر تولید چند محصول را بهینه کرده و نیازهای صنعتی و خانگی را تأمین می‌کند. نتایج طراحی پایه نشان می‌دهد بازده انرژی و اگزرژی به‌ترتیب 83/24% و 23/56%، توان خالص خروجی 12/23مگاوات و ظرفیت بار حرارتی 13/39 مگاوات است. تولید هیدروژن 60/93کیلوگرم در روز، آب شیرین 7/106 کیلوگرم بر ثانیه، نرخ کل هزینه‌های تولید اگزرژی، تخریب اگزرژی و سرمایه‌گذاری به‌ترتیب 96/2982، 347/58 و 645/84 دلار بر ساعت و دوره بازگشت سرمایه 1/172 سال محاسبه شده است. در نهایت، تأثیر متغیرهای کلیدی بر عملکرد سامانه به کمک تحلیل حساسیت بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Thermoeconomic Analysis of a Polygeneration System for Flare Gas Recovery with Crude Oil Preheating

نویسندگان [English]

  • Mostafa Mahboobi
  • Ghanbar Ali Sheikhzadeh
  • Abolfazl Fattahi
University of Kashan
چکیده [English]

Flare gas, a byproduct of oil extraction, is usually burned without useful application, despite having a high potential for energy recovery. This study has designed and analyzed a polygeneration system for utilizing flare gas to simultaneously produce power, fresh water, hydrogen, and heat. The proposed system includes a supercritical carbon dioxide power cycle, a thermoelectric generator, crude oil preheating, a reverse osmosis desalination unit, and hydrogen production in a proton exchange membrane electrolyzer. Modeling was performed using Engineering Equation Solver software and evaluated through energy, exergy, and exergoeconomic analyses. The novelty of the study lies in presenting an integrated system that optimizes multi-product generation from flare gas to meet industrial and domestic demands. The basic design results indicate an energy efficiency and exergy efficiency of 83.24% and 23.56%, a net output power of 12.23 MW, and a thermal load capacity of 13.39 MW. Hydrogen production is 60.93 kg/day, fresh water production is 106.7 kg/s, and the total exergy product cost rate, total exergy destruction cost rate, and total investment cost are 2,982.96, 347.58, and 645.84 $/h, respectively, with a payback period of 1.72 years. Finally, the impact of key parameters on the system performance has been examined using sensitivity analysis.

کلیدواژه‌ها [English]

  • Flare Gas Recovery
  • Polygeneration System
  • Thermoeconomic Analysis
  • Waste-to-energy
  • Crude Oil Preheating
[1] E. Yazdani, J. Asadi, Y.H. Dehaghani, P. Kazempoor, Flare gas recovery by liquid ring compressors-system design and simulation, Journal of Natural Gas Science and Engineering, 84 (2020) 103627.
[2] J. Asadi, E. Yazdani, Y. Hosseinzadeh Dehaghani, P. Kazempoor, Technical evaluation and optimization of a flare gas recovery system for improving energy efficiency and reducing emissions, Energy Conversion and Management, 236 (2021) 114076.
[3] M.M. Parivazh, M. Mousavi, M. Naderi, A. Rostami, M. Dibaj, M. Akrami, The Feasibility Study, Exergy, and Exergoeconomic Analyses of a Novel Flare Gas Recovery System, Sustainability, 14(15) (2022) 9612.
[4] M. Zolfaghari, V. Pirouzfar, H. Sakhaeinia, Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants, Energy, 124 (2017) 481-491.
[5] M. Nezhadfard, A. Khalili-Garakani, Power generation as a useful option for flare gas recovery: Enviro-economic evaluation of different scenarios, Energy, 204 (2020) 117940.
[6] M. Tavallaei, M. Farzaneh-Gord, A.J. Moghadam, 4E analysis and thermodynamic optimization of flaring associated gas recovery using external firing recuperative gas turbine, Energy Conversion and Management, 266 (2022) 115836.
[7] P. Iora, P. Bombarda, S.L. Gómez Aláez, C. Invernizzi, T. Rajabloo, P. Silva, Flare gas reduction through electricity production, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(21) (2016) 3116-3124.
[8] M.R. Rahimpour, Z. Jamshidnejad, S.M. Jokar, G. Karimi, A. Ghorbani, A.H. Mohammadi, A comparative study of three different methods for flare gas recovery of Asalooye Gas Refinery, Journal of Natural Gas Science and Engineering, 4 (2012) 17-28.
[9] A. Hajizadeh, M. Mohamadi-Baghmolaei, R. Azin, S. Osfouri, I. Heydari, Technical and economic evaluation of flare gas recovery in a giant gas refinery, Chemical Engineering Research and Design, 131 (2018) 506-519.
[10] M. Tahmasebzadehbaie, H. Sayyaadi, Regional management of flare gas recovery based on water-energy-environment nexus considering the reliability of the downstream installations, Energy Conversion and Management, 239 (2021) 114189.
[11] M. Moosazadeh, S. Ajori, V. Taghikhani, R.G. Moghanloo, C. Yoo, Sustainable hydrogen production from flare gas and produced water: A United States case study, Energy, 306 (2024) 132435.
[12] S.F. Ahmadi, A. Minaei, M. Ebadollahi, H. Ghaebi, M.H. Shahrivar, Energy management and reducing the environmental impacts of industrial flare gases using a new trigeneration energy system, Process Safety and Environmental Protection, 177 (2023) 1129-1141.
[13] H. Semmari, A. Filali, S. Aberkane, R. Feidt, M. Feidt, Flare Gas Waste Heat Recovery: Assessment of Organic Rankine Cycle for Electricity Production and Possible Coupling with Absorption Chiller, Energies, 13(9) (2020) 2265.
[14] A. Bejan, G. Tsatsaronis, M.J. Moran, Thermal design and optimization, John Wiley & Sons, 1995.
[15] X. Wang, Y. Dai, Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study, Applied Energy, 170 (2016) 193-207.
[16] A.S. Nafey, M.A. Sharaf, Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations, Renewable Energy, 35(11) (2010) 2571-2580.
[17] X. Zhang, R. Zeng, T. Du, Y. He, H. Tian, K. Mu, X. Liu, H. Li, Conventional and energy level based exergoeconomic analysis of biomass and natural gas fired polygeneration system integrated with ground source heat pump and PEM electrolyzer, Energy Conversion and Management, 195 (2019) 313-327.
[18] Q. Shen, M. Hou, X. Yan, D. Liang, Z. Zang, L. Hao, Z. Shao, Z. Hou, P. Ming, B. Yi, The voltage characteristics of proton exchange membrane fuel cell (PEMFC) under steady and transient states, Journal of Power Sources, 179(1) (2008) 292-296.
[19] J.H. Gary, G.E. Handwerk, M.J. Kaiser, Petroleum Refining: Technology and Economics, Fifth Edition, CRC Press, 2007.
[20] Z.K. Mehrabadi, F.A. Boyaghchi, Exergoeconomic and exergoenvironmental analyses and optimization of a new low-CO2 emission energy system based on gasification-solid oxide fuel cell to produce power and freshwater using various fuels, Sustainable Production and Consumption, 26 (2021) 782-804.
[21] M. Hassanzadeh, H. Ghaebi, M. Fili, Development and Analysis of a Novel Multi-Generation System Fueled by Biogas with Smart Heat Recovery, Amirkabir Journal of Mechanical Engineering, 54(7) (2022) 1673-1700.
[22] B.M. Ziapour, M. Saadat, V. Palideh, S. Afzal, Power generation enhancement in a salinity-gradient solar pond power plant using thermoelectric generator, Energy Conversion and Management, 136 (2017) 283-293.
[23] E. Bellos, S. Pavlovic, V. Stefanovic, C. Tzivanidis, B.B. Nakomcic-Smaradgakis, Parametric analysis and yearly performance of a trigeneration system driven by solar-dish collectors, International Journal of Energy Research, 43(4) (2019) 1534-1546.
[24] m. abdolalipouradl, M. Namkhah, Exergoeconomic analysis and multi-objective optimization for single, double and triple flash cycles for utilization of booshli’s Geothermal well, Amirkabir Journal of Mechanical Engineering, 56(7) (2024) 955-982.
[25] J. Nondy, T.K. Gogoi, Tri-objective optimization of two recuperative gas turbine-based CCHP systems and 4E analyses at optimal conditions, Applied Energy, 323 (2022) 119582.
[26] R. Khaffaf pour, M. Yari, A. Darabadi Zare, Cost Analysis of a Zero-Carbon Hydrogen, Power, and Heat System Using Advanced Nuclear and Sorption-Enhanced Methane Reforming, Amirkabir Journal of Mechanical Engineering, 57(2) (2025) 147-170.
[27] C. Wu, S.-s. Wang, J. Li, Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants, Energy Conversion and Management, 171 (2018) 936-952.
[28] A. Nemati, M. Sadeghi, M. Yari, Exergoeconomic analysis and multi-objective optimization of a marine engine waste heat driven RO desalination system integrated with an organic Rankine cycle using zeotropic working fluid, Desalination, 422 (2017) 113-123.
[29] R.S. El-Emam, I. Dincer, Thermodynamic and thermoeconomic analyses of seawater reverse osmosis desalination plant with energy recovery, Energy, 64 (2014) 154-163.
[30] T. Ioroi, K. Yasuda, Z. Siroma, N. Fujiwara, Y. Miyazaki, Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells, Journal of Power Sources, 112(2) (2002) 583-587.
[31] M. Heidari, A. Ataei, M.H. Rahdar, Development and analysis of two novel methods for power generation from flare gas, Applied Thermal Engineering, 104 (2016) 687-696.
[32] A.K. Sleiti, W.A. Al-Ammari, K.M. Aboueata, Flare gas-to-power by direct intercooled oxy-combustion supercritical CO2 power cycles, Fuel, 308 (2022) 121808.