مطالعه اثر محدوده داده آزمون کشش تک-محوره بر مدل هایپرالاستیک جهت مدل‌سازی دیسک آب‌بند پلی‌یورتانی

نوع مقاله : مقاله پژوهشی

نویسندگان

مرکز پژوهش و فناوری خط لوله (PRTC)، دانشکده مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران.

چکیده

استفاده از خطوط لوله یکی از اصلی‌ترین روش‌های انتقال مواد در صنایع مختلف است. در این میان، تمیزکاری و بازرسی دوره‌ای لوله‌ها نقش مهمی در افزایش بهره‌برداری و بازدهی سیستم ایفا می‌کند. توپک‌رانی یکی از مؤثرترین روش‌ها برای تمیزکاری، بازرسی و همچنین ایجاد آب‌بندی درون لوله‌هاست. بررسی رفتار المان‌های توپک حین عبور از لوله‌های فلزی، برای جلوگیری از گیر افتادن و انسداد آن‌ها، ضروری به‌نظر می‌رسد. یکی از مراحل کلیدی در مدل‌سازی و تحلیل عددی دیسک‌های آب‌بند پلی‌یورتانی، که مهم‌ترین جزء آب‌بندی در توپک‌ها محسوب می‌شوند، تخمین رفتار هایپرالاستیک این مواد است؛ چراکه این الاستومرها قادر به تحمل کرنش‌های بزرگ هستند. با این حال، محدوده کرنش واقعی دیسک‌ها در کاربرد عملی، کوچک‌تر از مقادیر داده‌شده در آزمون‌های کشش است. در نتیجه، انتخاب دقیق بازه داده‌های تنش-کرنش برای محاسبه ضرایب مدل‌های هایپرالاستیک، یکی از چالش‌های مهم در تعریف این مواد در شبیه‌سازی عددی محسوب می‌شود. به‌منظور بررسی دقیق‌تر، آزمون تجربی توپک‌رانی تک‌دیسک برای سه دیسک با ضخامت‌های مختلف در چهار لوله فلزی با ضخامت دیواره متفاوت انجام شد. نتایج این آزمون برای صحت‌سنجی تحلیل عددی مورد استفاده قرار گرفت. بررسی‌ها نشان دادند که استفاده نامناسب از داده‌های تنش-کرنش می‌تواند منجر به تغییر نتایج تا ۲۵ درصد در بازه مورد مطالعه گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of the Effect of the Stress-Strain Range from a Uniaxial Tensile Test on the Hyperelastic Modeling of a Polyurethane Sealing Disc

نویسندگان [English]

  • Salar Jouzani
  • Mohammad Hossein Soorgee
Ph.D Candidate, Faculty of Mechanical and Energy Engineering, Shahid Beheshty University, Tehran, Iran
چکیده [English]

Pipeline systems are the primary means of transporting materials in many industries. Cleaning, inspecting, and overhauling these systems are crucial for maintaining their efficiency. Pipeline pigging is one of the most effective methods for cleaning and sealing pipelines. Therefore, studying the behavior of the sealing elements of pigs as they pass through steel pipes is essential to prevent blockages and ensure smooth operation. One of the key procedures in simulating the sealing discs, as the primary sealing elements of the pig, is predicting the hyperelastic behavior of these elastomers, which can endure large strains. However, the range of strain experienced in the present simulation is smaller than that observed in uniaxial tensile tests. Therefore, selecting the optimal range of data from the stress-strain curve is a significant challenge in accurately calculating the hyperelastic model coefficient. To ensure a more precise analysis, experimental tests were conducted to validate the numerical results. In this study, three sealing discs with different thicknesses were tested in four steel pipes with varying wall thicknesses. The numerical results indicate that using an inappropriate range of stress-strain data from uniaxial tensile tests can lead to a discrepancy of up to 25%, which is considerable.

کلیدواژه‌ها [English]

  • Sealing Discs
  • Hyperelastic Models
  • Incompressible Materials
  • Pipeline Pigging
[1] J. Cordell, H. Vanzant, Pipeline pigging handbook,  (2003).
[2] J.F. Hilyard, The oil & gas industry: A nontechnical guide,  (2012).
[3] J.N. Tiratsoo, Pipeline pigging technology, Gulf Professional Publishing, 1992.
[4] M. Soorgee, A numerical study on differential pressure needed for ball pig motion in pipelines based on nonlinear hyperelastic material model, Journal of Natural Gas Science and Engineering, 59 (2018) 466–472.
[5] H.S. Naeini, M.H. Soorgee, Experimental investigation on sphere pig movement in multiple thickness pipe, Journal of Natural Gas Science and Engineering, 95 (2021) 104152.
[6] Y. Cao, C. Liu, H. Tian, S. Zhang, Y. Sun, Prediction of the driving force for a cup pig based on the distribution of contact stress, Journal of Natural Gas Science and Engineering, 81 (2020) 103415.
[7] X. Zhu, D. Wang, H. Yeung, S. Zhang, S. Liu, Comparison of linear and nonlinear simulations of bidirectional pig contact forces in gas pipelines, Journal of Natural Gas Science and Engineering, 27 (2015) 151–157.
[8] X. Zhu, W. Wang, S. Zhang, S. Liu, Experimental research on the frictional resistance of fluid-driven pipeline robot with small size in gas pipeline, Tribology letters, 65 (2017) 1–10.
[9] Y.-G. Cao, L. Zhang, C. Liu, X.-Y. Li, Y.-G. Wei, Y.-T. Sun, Prediction of the Driving Force for the Bidirectional Pig Based on the Cantilever-Kelvin Combination Model, Journal of Pipeline Systems Engineering and Practice, 12(2) (2021) 04021004.
[10] H. Zhang, S. Zhang, S. Liu, Y. Wang, L. Lin, Measurement and analysis of friction and dynamic characteristics of PIG’s sealing disc passing through girth weld in oil and gas pipeline, Measurement, 64 (2015) 112–122.
[11] X.-X. Zhu, C.-M. Fu, Y.-T. Wang, S.-M. Zhang, Experimental research on the contact force of the bi-directional pig in oil and gas pipeline, Petroleum Science, 20(1) (2023) 474–481.
[12] J. Bonet, A.J. Gil, R.D. Wood, Nonlinear solid mechanics for finite element analysis: dynamics, Cambridge University Press, 2021.
[13] M. Destrade, M.D. Gilchrist, J. Motherway, J.G. Murphy, Slight compressibility and sensitivity to changes in Poisson's ratio, International Journal for Numerical Methods in Engineering, 90(4) (2012) 403–411.
[14] I. Green, Poisson ratio effects and critical valus in spherical and cylindrical Hertzian contacts, Applied Mechanics and Engineering, 10(3) (2005) 451.
[15] A. Amirkhani, A.R. Fotuhi, Two-layer artery wall modeling with hyperelastic material assumption, Modares Mechanical Engineering, 18(3) (2018) 75–85.
[16] A.R. Esmaeili, M. Keshavarz, A. Mojra, Optimization of hyperelastic model parameters of soft tissue based on genetic algorithm utilizing experimental mechanical dataset, Modares Mechanical Engineering, 15(9) (2015) 134–140.
[17] P. Namashiri, A. Allahverdizadeh, B. Dadashzadeh, Modeling and Simulation of Myocardial Hyperelastic and Viscoelastic Properties with Incorporation of Active Stress, Modares Mechanical Engineering, 23(9) (2023) 553–565.
[18] S. Jouzani, M.H. Soorgee, Experimental and numerical investigation on hyperelastic sealing disc contact behavior in pipeline, a comparison between fluid-driven and pull-through approaches, Journal of Pipeline Science and Engineering, 5(2) (2025) 100232.
[19] D. Systèmes, ABAQUS Documentation, in:  Version 6.6 Documentation, 2025a, https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt05ch17s05abm07.html#usb–mat–chyperelastic.
[20] D. Systèmes, ABAQUS Documentation, in:  Version 6.6 Documentation, 2025b, https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/stm/default.htm?startat=ch04s06ath123.html#stm–mat–hyperelastic–eq4
[21] C.-J. Kat, P.S. Els, Validation metric based on relative error, Mathematical and Computer Modelling of Dynamical Systems, 18(5) (2012) 487–520.
[22] D.C. Montgomery, E.A. Peck, G.G. Vining, Introduction to linear regression analysis, John Wiley & Sons, 2021.