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ABSTRACT: The development of models aimed at reducing computational cost has always been
a key challenge in advanced engineering analyses. Among the available approaches, Reduced Order
Models (ROMs) provide an effective means of accelerating simulations by reducing the complexity
of the governing system. When the underlying dynamical system is nonlinear and exhibits inherent
physical complexity, the accuracy of a ROM becomes highly sensitive to the method used to extract the
dominant structures of the system dynamics. Consequently, the modal decomposition technique must
be consistent with the physical characteristics of the problem. Reduced Order Models obtained through
the projection of the governing flow equations onto a modal subspace may exhibit limited accuracy in
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predicting the temporal evolution of the flow field, primarily due to inherent modeling and truncation . .
R . . L. . Dynamic Mode Decomposition
errors in the reduced dynamical system. To improve the temporal prediction capability of the Reduced

Order Model, a correction term is introduced into the reduced dynamical equations. In this research, Quasi-geostrophic Flow
stabilization methods for a Reduced Order Model of the axial equation based on Dynamic Mode
Decomposition (DMD) are investigated and analyzed for the simulation of quasi-geostrophic flow. An
important advantage of the modified Reduced Order Model, which addresses its accuracy limitations, is
its high computational efficiency. Accordingly, for a Reynolds number of 450 and a Rossby number of
0.0036, the time required to compute the direct numerical solution data over a specified time interval was
approximately 450 minutes. In contrast, the computation time using the Reduced Order Model for the

same time interval was about 21 minutes, demonstrating a significant reduction in computational time.

Stabilization Method
Geophysical Flow

1- Introduction
Geostrophic currents constitute a substantial portion of
large-scale ocean circulation and play a major role in climate

Decomposition, with particular emphasis on the simulation of
quasi-geostrophic flows.

variability and change. For example, Reid and colleagues
investigated the effects of geostrophic currents on coastal sea-
level variations in the northern North Pacific Ocean[1]. Due
to the inherent complexity of geostrophic current dynamics,
particularly in large-scale and long-term simulations, data-
driven approaches are frequently employed. One such
approach is the Dynamic Mode Decomposition (DMD)
method. Duke et al. applied the DMD technique to investigate
the growth rates of flow instabilities [2]. Moreover, Moayyedi
et al. investigated the effect of an eddy-viscosity-based
approach on modifying a Reduced Order Model derived
from Dynamic Mode Decomposition to predict the long-
term behavior of infiltration—displacement equations [3].
Their results demonstrated that the reduced-order model
was both highly accurate and computationally efficient.
The primary objective of the present study is to investigate
and analyze stabilization and modification strategies for a
reduced-order axial equation model based on Dynamic Mode
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2- Governing Equation

The governing equation for two-dimensional
incompressible barotropic flow, expressed in dimensionless
form, is given as follows:

1 v 1 1
O J(w X _ — V2w 4+ —sin(ny) (1)
Rodr Re Ro

3- Problem Geometry and Boundary Conditions

The problem considered in this study involves a single-
layer quasi-geostrophic flow at a Reynolds number of 450
and a Rossby number of 0.0036. Direct numerical simulations
were performed from an initial quiescent state up to a
maximum dimensionless time of 90, using a constant time
step of 0.0001. The computational domain was discretized
using a uniform Cartesian grid with 300x150 nodes.
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Table 1. Reduced Order Model stabilization methods
based on dynamic mode decomposition.

Number Methods
1 \I/k = k / NR

3 \I/kzﬂlk/NR

4- Stabilization of Reduced Order Model using Eddy
Viscosity Approach
Standard Reduced Order Models may exhibit limited

accuracy in predicting the temporal evolution of the flow
field. This limitation can arise from the following factors:

1) Numerical instabilities resulting from the truncation of
modes associated with high wavenumbers.

2) Insufficient accuracy of the input profiles, which may
not fully satisfy the governing equations.

To restore stability to the reduced dynamical system, an
artificial eddy-viscosity term is introduced into the dynamic
system equations. The correction term is added as follows:

C, = (¥, L(v),4,)
i @)
Bkz’ = (I/e‘I/kL(qbZ.),gbk)
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The Reduced Order Model is therefore modified as
follows:

3)

The stabilization methods considered in this study are
summarized in Table 1.

5- Calibration of the Reduced Order Model

The proposed approach for determining the coefficients
of the correction term involves solving a local optimization
problem over a specified time interval. The optimization
problem is formulated based on the following relation[4]:

al dak(ti) ddk(ti)
) = E[ . dt

N,
-S> Bk t)~C]
k=1

6- Results and Discussion

This section presents and compares the results obtained
from the stabilization and modification of the Reduced Order
Model based on Dynamic Mode Decomposition. Figure 1
illustrates a comparison of the temporal evolution of the real
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Fig. 1. Comparison of Time Variations of the Real Part of Modal Coefficients obtained from the Standard
Reduced Order Model, Stabilized Reduced Order Model and Direct Numerical Solution Data.
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Fig. 2. Comparison Between the Calibrated-DMD-ROM, the Standard Reduced Order Model
and Direct Numerical Simulation in Predicting the Time Variations of the Real Part of Modal
Coefficients

part of the modal coefficients obtained from the standard
Reduced Order Model, the stabilized Reduced Order Model,
and the direct numerical simulation data. The results indicate
that the stabilized model significantly reduces deviations
from the exact solution data. Figure 2 compares the calibrated
Reduced Order Model, the standard Reduced Order Model,
and the direct numerical simulation in the time domain
of the real part of the modal coefficients. As observed, the
application of Reduced Order Model modification and
calibration techniques leads to improved stability and
accuracy across different time intervals, enabling reliable
prediction of the governing flow dynamics..

7- Conclusions

Based on the analyses conducted, the main achievements
of this research can be summarized as follows:

1. Investigation of various stabilization methods for
reduced-order quasi-geostrophic flow models based on the
barotropic vorticity transport equation.

2. Development of an optimized Reduced Order Model
based on minimizing the error between the Reduced Order
Model predictions and the direct numerical simulation data.

3. Significant reduction in computational time for the

941

modified Reduced Order Model compared with direct
numerical simulations, while maintaining high accuracy in
reconstructing the flow patterns.
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Numerical Simulation Exact Solution
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Numerical Simulation Exact Solution

-09-06-03 0 03 06 09

s (6338 (5 5lwand g 385 U 5 Jeols s 19 () 9 b2 QU (A1) 51 phon bahas. ) U

Fig. 1. Contour plots of (a) stream function and (b) vorticity obtained from the exact solution and direct
numerical simulation.

Seeld 390 325 3 |y cilises (Seolind sla)ld) L e Sl (g
Seeld slapians loodls e ilodse Sl gpdn I3
sob 4 b (Bpme (Sealind 390 4 jo5 by & Sloj Jl Cuwlords oo

osliwl 390 [YV]° Jlo iyl o [Y8] Tghdsg ol Y0 ] TSL, { Y]
Canldid 5 )\
S35 sl osly s plo lad b Waosly I (glae gazee & Ll 4o
©391355 Sy Slaglie IS Grog b ke & sl s (bey ol
£ 228 Sodly b pulits (335 (ilodend I (S aigel L oad
ol el L;LmOIA:A 5 dlss S Oygo LY Ug.l.mbb Do oo
i P8 L badslas Vgome s widled i po v, by lgis cov i
Sy & adllas 3)50 s (plpls )l JLE KA 4 s el

151l Gy (W) daly b g N g o ML s ilo

N
= [01,1)2,1}3,...,11]\,] (\v)

1. Epidemiology

2. Neuroscience

3. Robotics

4. Video Processing
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Table 2. Error rate between exact solution data and
direct numerical simulation.
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1. Heisenberg

2. Closure model
3. Viscosity kernel
4. Rempfer

5. quadratic viscosity kernel
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Table 3. Specifications of the computing system used
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Intel(R) Core (TM) i7-6500U CPU @ 2.50GHz 2.59 GHz o
RAM 8 GB alssls
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Table 4. Computational time used for the Reduced Order Model and direct numerical simulation.
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Fig. 2. Contours of vorticity for a) t=10, b) t=20, ¢) t=50, d) t=70.
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Fig. 3. Contours of streamfunction for a) t=10, b) t=20, c) t=50, d) t=70.
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Fig. 4. Contours of the mean parts of the vorticity.

(bl @ by bl (RlEl cel Sy opl sl g ysS
ol S (i otz 50 d9de Fuad cloab S Mg g (Suadl

Jde OT JLos & g bl (ml58l b e calisee slgs > s s

a0¢



oasuie b JSG j5 a8 jelailen sl 48,5 Ojen 38> > 5l Jols
3 g canlons 03y9] iso b5 bl azwlSas, Juo 5l Juols zols ol
3905 53 a5 oselants lixe, o dlael g 0 1,51y gl sy 0 iSo oyl

) e dtadlgs (ilwylil slobsy iz il e oy JB

Standard DMD Based ROM
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5000 |. = Stabilized DMD Based ROM (2)

| ———— Stabilized DMD Based ROM (3)
4000 ° Baseline Data

LS °®
-2000 F P
ol Yol L L
0 0.2 04 0.6 0.8
Time
6000 Standard DMD Based ROM
i Stabilized DMD Based ROM (1)
5000 Stabilized DMD Based ROM (2)
e Stabiilized DMD Based ROM (3)
4000 L] Baseline Data
3000
2000 f-
1000
< of
-1000 |
-2000
- 1 L B ] | n 1l
0 0.2 0.4 0.6 0.8
Time
8000 Standard DMD Based ROM
| Stabilized DMD Based ROM (1)
6000k Stabilized DMD Based ROM (2)
Stabilized DMD Based ROM (3)
L [} Baseline Data
4000

1
0 0.2 04 0.6 0.8
Time

il S Cds g laasles dgae dlaad i (pl 50 (5 LU LY
il ol cwloads oslatwl Hlaisyge diwe (das > 0 &8 wib

sodly g 3l dwlSas, Jao ¢ gilolul sla gy oy (slawsldn

6000 Standard DMD Based ROM
Stabilized DMD Based ROM (1)
5000 | == Stabilized DMD Based ROM (2)
| ———— Stabilized DMD Based ROM (3)
4000 ° Baseline Data

3000 |
2000

1000F
< of

-1000f .
B L °
2000 F o8
e L 1 1 L 1 L L L 1
0 0.2 0.4 0.6 0.8
Time
6000 ——— Standard DMD Based ROM

| = Stabilized DMD Based ROM (1)
5000 | == Stabilized DMD Based ROM (2)

| == Stabilized DMD Based ROM (3)
4000 . Baseline Data

E » i
0 0.2 0.4 0.6 0.8
Time

8000 | =™ Standard DMD Based ROM
- Stabilized DMD Based ROM (1)
| = Stabilized DMD Based ROM (2)
60001 ___ stabilized DMD Based ROM (3)
e Baseline Data

1 1

n 1 i
0 0.2 0.4 0.6 0.8
Time

G gy b ouud Mol duwlSady Juo o lailivs] dwlSady Jaw 31 ols JIdge culpmd Fuis idu oy Of puti duylie .0 JSUG
38> J> laodld g g 5lw,lnb

Fig. 5. Comparison of time variations of the real part of modal coefficients obtained from the standard Re-
duced Order Model, the modified Reduced Order Model with stabilization methods and exact solution data
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Table 5. Reduced Order Model stabilization methods based on dynamic mode decomposition
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Fig. 6. Comparison of time variations of the imaginary part of modal coefficients obtained from the standard
Reduced Order Model, the modified Reduced Order Model with stabilization methods and exact solution data.
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Fig. 7. Comparison between the Calibrated Reduced Order model, the Standard Reduced Order Model, and
direct numerical simulation in predicting the amplitude of time variations of the real part of modal coefficients.
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Fig. 8. Comparison between the Calibrated Reduced Order model, the Standard Reduced Order Model, and
direct numerical simulation in predicting the amplitude of time variations of the imaginary part of modal coef-
ficients.

104



JI390 al o (i Sy (5 malltans (5345 (5 5Lurdmnsd g oz Io! dlwlS 4y Jobo I Jols gl o Olape (iSle s F Jga

Table 6. Mean square error between the results from the Calibrated Reduced Order Model and direct numeri-
cal simulation for the real part of the modal coefficients.
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