تأثیر فرآیند نورد تجمعی معکوس بر ریزساختار، خواص مکانیکی و ناهمگنی خواص آلیاژآلومینیوم AA1050

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مهندسی مواد - خواص فیزیکی و مکانیکی، دانشگاه سمنان

2 دانشیار دانشکده مهندسی مواد و متالورژی، دانشگاه سمنان

3 استادیار دانشکده مهندسی مکانیک، دانشگاه شاهرود

چکیده

در این پژوهش پس از انجام 13 پاس فرآیند نورد تجمعی بر ورق آلومینیوم AA1050، بهبود ریزساختار ورق تا دستیابی به دانه‌هایی با ابعاد نانومتری بررسی شده است. در این پژوهش بین پاس‌های فرآیند ورق‌ها o180 حول محور عمود (ND) چرخانده و هر پاس در خلاف جهت پاس قبل انجام شده است و همچنین قبل از انجام هر پاس ورق تحت عملیات پیش‌گرم قرار گرفته است. به منظور بررسی تغییرات استحکام و میزان ازدیاد طول ورق طی پاس‌های مختلف فرآیند، آزمون کشش تک‌محور در سه جهت نورد (RD)، جهت عرضی (TD) و زاویه‌ی o45 نسبت به جهت نورد انجام و میزان ناهمگنی خواص در این سه جهت اندازه‌‌گیری شده است. چگونگی تغییر ناهمگنی خواص مکانیکی ورق طی پاس‌های مختلف فرآیند به صورت سینوسی است و کمترین میزان ناهمگنی در پاس‌های سوم، چهارم و سیزدهم به وقوع پیوست. در پایان با انجام آزمون میکروسختی ویکرز‌ در طول ضخامت ورق، تغییرات سختی طی پاس‌های مختلف فرآیند بررسی شده است. سختی و استحکام ورق‌ها در پاس‌های ابتدایی فرآیند افزایش می‌یابد، در پاس‌های میانی تقریبا ثابت است و در پاس‌های پایانی نیز کمی کاهش می‌یابد. میزان ازدیاد طول نیز پس از افت ناگهانی در پاس اول، در پاس‌های بعدی فرآیند با شیب کمی افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Reversed Accumulative Roll Bonding Process on Microstructure, Mechanical Properties and Properties Inhomogeneity of AA1050 Alloy

نویسندگان [English]

  • Mojtaba Dehghan 1
  • Fathallah Qods 2
  • Mahdi Gerdooei 3
1
2
3
چکیده [English]

In this research, 13 passes ARB process performed on AA1050 sheets. The microstructural improvement to achieving nanometer-sized grains during ARB process was studied. In this process, the sheets were rotated 180o around the normal direction (ND) axis after each rolling passes and preheated before each passes. Moreover, the changing of strength and elongation of the ARBed sheets during the process was investigated by uniaxial tensile test in three directions (roll direction (RD), transverse direction (TD) and angle of 45o toward RD); and then the inhomogeneity of mechanical properties in these directions was measured. The least of inhomogeneity occurred in three, four and thirteenth passes of process. Finally, micro-Vickers hardness was investigated throughout thickness of the sheets in this process. The strength and hardness of sheets increased at the early passes and then did not changed apparently at the middle passes of process; and subsequently they decreased gently. The elongation of sheets decreased swiftly at the first pass of process; and then it increased slowly.

کلیدواژه‌ها [English]

  • Reversed Accumulative Roll Bonding
  • Nanostructure
  • Tensile Strength
  • Elongation
  • Inhomogeneity Index
[1] M. Eizadjou, H. Danesh Manesh, K. Janghorban, 2009,“Microstructure and mechanical properties of ultrafine
grains (UFGs) aluminum strips produced by ARB process”, Journal of Alloys and Compounds, 474, pp.406-15.
[2] H. Pirgazi, A. Akbarzadeh, R. Petrov, L. Kestens, 2008,“Microstructure evolution and mechanical properties of
AA1100 aluminum sheet processed by accumulative roll bonding”, Materials Science and Engineering A, 497, pp.
132-38.
[3] M. Dehghan, F. Qods, M. Gerdooei, 2012, “Investigation of Microstructure of the Commercial Pure Aluminium in
the ARB Process”, Materials Science Forum, 702-703,pp. 147-150.
[4] N. Tsuji, T. Toyoda, Y. Minamino, Y. Koizumi, T.Yamane, M. Komatsu, M. Kiritani, 2003, “Microstructural
change of ultrafine-grained aluminum during high-speed plastic deformation”, Materials Science and Engineering
A, 350, pp. 108-16.
[5] N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, 2009,“Strengthening mechanisms in nanostructured high-purity
aluminium deformed to high strain and annealed”, Acta Materialia, 57, pp. 4198-4208.
[6] X. Huang, N. Tsuji, N. Hansen, Y. Minamino, 2003,“Microstructural Evolution During Accumulative Roll-
Bonding of Commercial Purity Aluminum”, Materials Science and Engineering A, 340, pp. 265-71.
[7] S.H. Lee, Y. Saito, T. Sakai, H. Utsunomiya, 2002, “Microstructures and Mechanical Properties of 6061
Aluminum Alloy Processed by Accumulative Roll-Bonding”, Materials Science and Engineering A, 325, pp.
228-35.
[8] Y.H. Chung, J.W. Park, K.H. Lee, 2006, “An Analysis of Accumulated Deformation in the Equal Channel
Angular Rolling (ECAR) Process”, Metals and Materials International, 4, pp. 289-92.
[9] K. Hanazaki, N. Shigeiri, N. Tsuji, 2010, “Change in Microstructures and Mechanical Properties during
Deep Wire Drawing of Copper”, Materials Science and Engineering A, 527, pp. 5699-5707.
[10] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F.Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji,
A. Rosochowski, A. Yanagida, 2008, “Severe Plastic Deformation (SPD) Processes for Metals”, CIRP Annals
- Manufacturing Technology, 57, pp. 716-35.
[11] H. Utsunomiya, K. Hatsuda, T. Sakai, Y. Saito 2004,“Continuous Grain Refinement of Aluminum Strip by
Conshearing”, Materials Science and Engineering A, 372, pp. 199-206,.
[12] R. Nasiri Dehsorkhi, F. Qods, M. Tajally, 2011, “Investigation on microstructure and mechanical properties of Al–Zn composite during accumulative roll bonding (ARB) process”, Materials Science and Engineering A, 530, pp. 63-72.
[13] S. Pasebani, M.R. Toroghinejad, “Nano-grained 70/30 brass strip produced by accumulative roll-bonding (ARB)
process”, Materials Science and Engineering A, No. 527,pp. 491-97, 2010.
[14] K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G.Brokmeier, M.Y. Zheng, 2010, “Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB)”, Materials Science and Engineering A, 527, pp. 3073-78.
[15] M. Eizadjou, A. Kazemi Talachi, H. Danesh Manesh, H.Shakur Shahabi, K. Janghorban, 2008, “Investigation of
structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process”, Composites Science and Technology, 68,pp. 2003-09.
[16] A. Kolahi , A. Akbarzadeh, M.R. Barnett, 2009, “Electron back scattered diffraction (EBSD) characterization of
warm rolled and accumulative roll bonding (ARB) processed ferrite”, Journal of Materials Processing Technology, 209, pp. 1436-44.
[17] S.G. Chowdhury, V.C. Srivastava, B. Ravikumar, S.Soren, 2006, “Evolution of texture during accumulative
roll bonding (ARB) and its comparison with normal cold rolled aluminium–manganese alloy”, Scripta Materialia,
54, pp. 1691-96.
[18] S. Pasebani, M.R. Toroghinejad, M. Hosseini, J. Szpunar,2010, “Textural evolution of nanograined 70/30 brass
produced by accumulative roll-bonding”, Materials Science and Engineering A, 527, pp. 2050-56.
[19] S.A. Hosseini, H. Danesh Manesh, 2009, “High-strength,high-conductivity ultra-fine grains commercial pure
copper produced by ARB process”, Materials and Design, 30, pp. 2911-18.
[20] M. Dehghan, F. Qods, M. Gerdooei, 2013, “Effect of Accumulative Roll Bonding Process with Inter-Cycle
Heat Treatment on Microstructure and Microhardness of AA1050 Alloy”, Key Engineering Materials, 531-532, pp.
623-26.
[21] N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, 2002, “Strength and Ductility of Ultrafine Grained Aluminum and Iron
Produced by ARB and Annealing”, Scripta Materialia, 47, pp. 893-99.
[22] A.A. Roostaei, A. Zarei-Hanzaki, H.R. Abedi, M.R. Rokni, 2011, “An Investigation into the Mechanical Behavior
and Microstructural Evolution of the Accumulative Roll Bonded AZ31 Mg Alloy upon Annealing”, Materials and
Design, 32, pp. 2963-68.
[23] H.W. Kim, S.B. Kang, N. Tsuji, Y. Minamino, 2005, “Elongation increase in ultra-fine grained Al–Fe–Si alloy
sheets”, Acta Materialia, 53, pp. 1737-49.
[24] A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D.Baró, J.A. Szpunar, T.G. Langdon, 2003, “Experimental
Parameters Influencing Grain Refinement and Microstructural Evolution During High-Pressure Torsion”,Acta Materialia, 51, pp. 753-65.