ارائه الگوریتم مرز غوطه ور شبکه بولتزمن- شبکه فنر جهت بررسی رفتار صفحه تغییر شکل پذیر دوبعدی تحت اثر جریان سیال

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

در این مطالعه یک روش ترکیبی و دوبعدی مرز غوطه ور- شبکه بولتزمن- شبکه فنر پیشنهاد شده است. در این روش ترکیبی از معادلات شبکه بولتزمن به علاوه الگوریتم اعمال نیروی چندمرحله‌ای به عنوان حل‌گر دامنه سیال و از روش مرز غوطه ور برای محاسبه نیروی اندرکنشی سیال و جامد استفاده شده است. برای تحلیل تغییر شکل جسم نیز روش شبکه فنر به کار گرفته شده است. در این مدل، جسم جامد به صورت مجموعه ای از فنرهای خطی فرض می‌شود که به صورت منظم در کنار هم قرار می‌گیرند. جهت کاهش ناپایداری‌ها و محدودیت‌های موجود در انتخاب سایز شبکه و گام زمانی رو ش‌های ترکیبی قبلی شبکه بولتزمن- شبکه فنر، در این مطالعه برای اولین بار یک الگوریتم ضمنی شبکه فنر منطبق بر روش مرز غوطه ور- شبکه بولتزمن ارائه شده است. درنهایت، حل‌گرهای سیال و جامد به ترتیب با شبیه‌سازی جریان عبوری از روی جسم صلب و همچنین تغییر شکل تیر یک سرگیردار تحت بارگذاری محوری و خمشی صحت سنجی می‌شوند. سپس یک صفحه دوبعدی الاستیک که در قسمت میانی خود ثاب تشده در حضور جریان سیال شبیه‌سازی می‌شود. نتایج عددی در کد توسعه داده شده با استفاده از نرم افزار کامسول نیز جهت اطمینان بیشتر مقایسه می‌شود که دقت این روش ترکیبی را نشان می‌دهد. همین طور نشان داده می‌شود که کاهش صلبیت صفحه باعث کاهش ضریب درگ و همین طور به تعویق افتادن شروع شرایط ناپایا در جریان حول صفحه می‌شود

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Proposing Immersed Boundary-Lattice Boltzmann-Lattice Spring Algorithm for Simulation of 2-D Deformable Plate in Steady Flow

نویسندگان [English]

  • B. Afra
  • M. Nazari
  • M.H. Keyhani
Mechanical Engineering Department, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

An immersed boundary-lattice Boltzmann method along with a lattice spring configuration is proposed. Fluid-solid interaction was accounted for by an additional force density in the lattice Boltzmann equation enhanced with the split-forcing approach. To analyze deformation of a flexible body, a robust lattice spring model is implemented. In this way, solid body is considered by collection of linear springs which are connected regularly inside the body. To reduce instabilities and limitation in selection of lattice spring length and time step, for the first time, we extended an implicit approach based on lattice Boltzmann-lattice spring method. Finally, flow and solid solvers are respectively validated by simulation of flow over a rigid plate and deformation of cantilever beam under axial and bending forces. Then, a deformable plate which is fixed in the middle is simulated. Results are also compared with the results of COMSOL’s software which show accuracy of the presented hybrid method. It is also shown that decreasing of the rigidity of the plate causes reduction of drag coefficient and retardation in initiation of the unsteady conditions.

کلیدواژه‌ها [English]

  • Immersed boundary
  • Lattice Boltzmann method
  • Lattice spring model
  • Poisson’s ratio
  • Thin plate
  • Critical Reynolds number
[1] G.A. Buxton, R. Verberg, D. Jasnow, A.C. Balazs, Newtonian fluid meets an elastic solid: Coupling lattice Boltzmann and lattice-spring models, Physical Review E, 71(5) (2005) 056707.
[2] R.M. MacMeccan, J.R. Clausen, G.P. Neitzel, C.K. Aidun, Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method, Journal of Fluid Mechanics, 618 (2009) 13-39.
[3] C.S. Peskin, Flow patterns around heart valves: A numerical method, Journal of Computational Physics, 10(2) (1972) 252-271.
[4] C.S. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics, 25(3) (1977) 220-252.
[5] A. Gilmanov, F. Sotiropoulos, E. Balaras, A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids, Journal of Computational Physics, 191(2) (2003) 660-669.
[6] B. Afra, M. Nazari, M.H. Kayhani, A.A. Delouei, G. Ahmadi, An immersed boundary-lattice Boltzmann method combined with a robust lattice spring model for solving flow–structure interaction problems, Applied Mathematical Modelling, 55 (2018) 502-521.
[7] A. Amiri Delouei, M. Nazari, M.H. Kayhani, S. Succi, Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary--thermal lattice Boltzmann method, Physical Review E, 89(5) (2014) 053312.
[8] S.K. Kang, Y.A. Hassan, A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries, International Journal for Numerical Methods in Fluids, 66(9) (2011) 1132-1158.
[9] A.A. Delouei, M. Nazari, M.H. Kayhani, S. Succi, Immersed Boundary – Thermal Lattice Boltzmann Methods for Non-Newtonian Flows Over a Heated Cylinder: A Comparative Study, Communications in Computational Physics, 18(2) (2015) 489-515.
[10] D. Goldstein, R. Handler, L. Sirovich, Modeling a No-Slip Flow Boundary with an External Force Field, Journal of Computational Physics, 105(2) (1993) 354-366.
[11] E.M. Saiki, S. Biringen, Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method, Journal of Computational Physics, 123(2) (1996) 450-465.
[12] J. Mohd-Yusof, Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries, Annual Research Briefs. NASA Ames Research Center= Stanford University Center of Turbulence Research: Stanford, (1997) 317-327.
[13] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations, Journal of Computational Physics, 161(1) (2000) 35-60.
[14] A.L.F. Lima E Silva, A. Silveira-Neto, J.J.R. Damasceno, Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, Journal of Computational Physics, 189(2) (2003) 351-370.
[15] Z.-G. Feng, E.E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems, Journal of Computational Physics, 195(2) (2004) 602-628.
[16] M.-C. Lai, C.S. Peskin, An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity, Journal of Computational Physics, 160(2) (2000) 705-719.
[17] Z.-G. Feng, E.E. Michaelides, Proteus: a direct forcing method in the simulations of particulate flows, Journal of Computational Physics, 202(1) (2005) 20-51.
[18] X.D. Niu, C. Shu, Y.T. Chew, Y. Peng, A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Physics Letters A, 354(3) (2006) 173-182.
[19] A. Dupuis, P. Chatelain, P. Koumoutsakos, An immersed boundary–lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder, Journal of Computational Physics, 227(9) (2008) 4486-4498.
[20] J. Wu, C. Shu, Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, Journal of Computational Physics, 228(6) (2009) 1963-1979.
[21] A. Amiri Delouei, M. Nazari, M.H. Kayhani, S.K. Kang, S. Succi, Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary–lattice Boltzmann approach, Physica A: Statistical Mechanics and its Applications, 447 (2016) 1-20.
[22] Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Physical Review E, 65(4) (2002) 046308.
[23] W.T. Ashurst, W.G. Hoover, Microscopic fracture studies in the two-dimensional triangular lattice, Physical Review B, 14(4) (1976) 1465-1473.
[24] A. Hrennikoff, Solution of problems of elasticity by the framework method, Journal of applied mechanics, 8 (1941), 169-175.
[25] A.B. Gavin, M.C. Christopher, J.C. Douglas, A lattice spring model of heterogeneous materials with plasticity, Modelling and Simulation in Materials Science and Engineering, 9(6) (2001) 485.
[26] L. Monette, M.P. Anderson, Elastic and fracture properties of the two-dimensional triangular and square lattices, Modelling and Simulation in Materials Science and Engineering, 2(1) (1994) 53.
[27] G.N. Hassold, D.J. Srolovitz, Brittle fracture in materials with random defects, Physical Review B, 39(13) (1989) 9273-9281.
[28] A. Parisi, G. Caldarelli, Self-affine properties of fractures in brittle materials, Physica A: Statistical Mechanics and its Applications, 280(1) (2000) 161-165.
[29] G.-F. Zhao, J. Fang, J. Zhao, A 3D distinct lattice spring model for elasticity and dynamic failure, International Journal for Numerical and Analytical Methods in Geomechanics, 35(8) (2011) 859-885.
[30] T. Omori, T. Ishikawa, D. Barthès-Biesel, A.V. Salsac, J. Walter, Y. Imai, T. Yamaguchi, Comparison between spring network models and continuum constitutive laws: Application to the large deformation of a capsule in shear flow, Physical Review E, 83(4) (2011) 041918.
[31] C.S. Peskin, The immersed boundary method, Acta Numerica, 11 (2003) 479-517.
[32] A. M. Kosevich, E. M. Lifshitz, L. D. Landau, and L. P. Pitaevskii, Theory of elasticity , ed: Butterworth-Heinemann, Burlington, MA, (1986).
[33] S.C.R. Dennis, W. Qiang, M. Coutanceau, J.L. Launay, Viscous flow normal to a flat plate at moderate Reynolds numbers, Journal of Fluid Mechanics, 248 (2006) 605-635.
[34] K.M. In, D.H. Choi, M.U. Kim, Two-dimensional viscous flow past a flat plate, Fluid Dynamics Research, 15(1) (1995) 13.