بهینه‌سازی مولد ترموالکتریک چند قطعه‌ای و محاسبه عملکرد با روش دقیق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد دانشکده مهندسی مکانیک دانشگاه صنعتی امیرکبیر

2 عضو هئیت علمی دانشکده مهندسی مکانیک دانشگاه صنعتی امیرکبیر

چکیده

در این مقاله مطالعه­ جامعی بر روی مواد ترموالکتریک شناخته شده در سال­های 1960 تا 2010 انجام شده و از بین این مواد، بهترین مواد ترموالکتریک برای بازه­های دمایی مشخص انتخاب شده است. یک مولد ترموالکتریک چند قطعه­ای برای عملکرد در بازه دمایی 300 تا 1300 درجه کلوین با استفاده از مواد ترموالکتریک انتخاب شده، بهینه­سازی شده است. سپس با استفاده از دو روش سوانسون و روش دقیق، ماکزیمم بازده ژنراتور بهینه ­شده، با فرض قابل صرف­نظر­بودن مقاومت تماسی و عایق بودن سطوح جانبی پایه­ها، محاسبه شده است. بیشینه بازده 4/23% برای چیدمان بهینه شده به دست آمده است که افزایش 3/5% را نسبت به آخرین کار منتشر شده، نشان می­دهد. قدرت و جریان الکتریکی قابل دستیابی به وسیله ژنراتور معرفی شده در بیشینه بازده محاسبه شده است. سایر مشخصات مورد نیاز برای طراحی ژنراتور، شامل طول، مقاومت خارجی و سطع مقطع تک تک قطعات به­دست آمده و  نتایج با پژوهش­های قبلی مقایسه شده است. 

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of Segmented Thermoelectric Generator and Calculation of Performance

نویسندگان [English]

  • Mahdi Zare Jafar Abadi 1
  • Hadi Ramin 1
  • Reza Hoseini Abardeh 2
چکیده [English]

Nowadays , the use of thermoelectric coolers and generators has greatly increased . Applications of this phenomenon include electronic cooling , portable refrigerator , air conditioning , high-precision temperature measurement and space applications . The phenomenon of thermoelectricity has outstanding features compared to other energy conversion methods , such as exclusion of moving parts , high reliability and long life span. The requirements for high temperature heat source and low efficiency are the remarkable challenges of this method . Today , the first challenge has been overcome, thanks to abundant wasted heat sources , elihw increasing the efficiency of thermoelectric devices are under extensive studies . Segmentation is a popular way for the increment of thermoelectric efficiency that is focused on in this paper.

کلیدواژه‌ها [English]

  • Thermoelectric Optimization
  • Maximum Efficiency
  • Segmented Thermoelectric
[1] S. B. Riffat., Xiaoli Ma; “Thermoelectrics: a review of present and potential applications”, J. of Applied Thermal Engineering, Vol. 23, 913-935., 2003
[2] G. Chen., M. Dresselhaus., Zh. Reng; “Nano Composites With High Thermoelectric Figure Of Merit”, Us-patent, 2009/0068465 A1 USA, Mar 12, 2009.
[3] B.W.Swanson., E.VSomer., R.R.Heikes; ,”Optimization of a Sandwiched Thermoelectric Device”, j.of heat transfer, Vol. 3, 77-81, 1961.
[4] J.p.Fleurial., A. Borshchevsky., T.Caillat ., R.Ewell;“New materials and devices for thermoelectric applications”, 32st Energy converssion engineering conference, Honolulu HI USA, 1080-1085, 1997.
[5] Y.S. Kang., M. Niino., I.A. Nishida., J. Yoshino; ”Development and Evaluation of 3-Stage Segmented Thermoelectric Elements”. ,17th International Conference on Thermoelectrics, Nogoya Japan, 429-432, 1998.
[6] G.J. Snyder; ” Using the compatibility factor to design high efficiency segmented thermoelectric generators, report of Jet Propulsion Laboratory/Califomia Institute of Technology, 2005.
[7] A. Glen., Slack., A. Moayyed; ”The maximum possible conversion efficiency of silicon-germanium thermoelectrk generators”. J. of Applied Physics, Vol. 70, 2694-2718, 1991.
[8] B. Sherman., R.R. Heikes., R.W. Ure., JR; ”Calculation of Efficiency of Thermoelectric Devices”, J. of Applied physics, Vol. 31, 1-16, 1960.
[9] M.S. El-Genk., H.H. Saber; ”High efficiency segmented thermoelectric unicouple for operation between 973 and 300 “, J. of Energy Conversion and Management, Vol. 44, 2003.
[10] O. Yamashita., S. Tomiyoshi; ”Bismuth telluride compounds with high thermoelectric figures of merit”, J.of Applied Physics, Vol. 93, 368-374, 2003.
[11] T. Caillat., A. Borshchevsky., J-p. Fleurial; ”High performance P-type thermoelectric materials and method of preparation”, US-Patent, 2003/0066476 A1 USA, Apr 10, 2003.
[12] T. Caillat., J.P. Fleurial., A. Borshchevsky; ”Preparation and thermoelectric properties of semiconducting Zn4Sb3”, Journal of Physics and Chemistry of Solids, Vol. 58, 1-18, 1997.
[13] Y. Gelebstein., B. Dado; “High Efficient Ge-Rich GexPb1-xTe Thermoelectric Alloys”, O.Ben-Yehuda; Journal of Electronic Materials, Vol. 39, 2049-2059, 2010.
[14] J. Fleurial., A. Borshchevsky., T. Caillat; “High Figure of Merit in Ce-Filled Skutterudites”, 15th International Conference on Thermoelectrics, pasadena CA USA, 91-95, 1996.
[15] Sh.R. Brown., S.M. Kauzlarich., F. Gascoin., G. J. Snyder; ”Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation”, J. of chemistry of materials, Vol. 18,1873-1877, 2006.
[16] O. Yamashita., S. Tomiyoshi; ”High performance n-type bismuth telluride with highly stable thermoelectric figure of merit”, J. of Applied Physics, Vol. 95, 6277-6283, 2004.
[17] N. Shutoh., S. Sakurada; “Thermoelectric properties of the TiX(Zr0.5Hf0.5)1−XNiSn half-Heusler compounds”, Journal of Alloys and Compounds, Vol. 389, 204-208, 2005.
[18] X. Tanga., Q. Zhang; “Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12„R:Ce,Ba,Y;M:Fe,Ni", J. of Applied Physics, Vol. 97, 1-10, 2005.
[19] A.F. May., J. Fleurial., G.J. Snyder; “Optimizing Thermoelectric Efficiency in La3-xTe4 via Yb Substitution”, Chemistry of materials, Vol. 22, 2995-2999, 2010.