شبیه‌سازی عددی موج‌ساز پیستونی به روش عددی لتیس بولتزمن با استفاده از هندسه سلولی چند لایه متحرک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی، دانشگاه فردوسی، مشهد، ایران

2 انشکده مهندسی، دانشگاه صنعتی قوچان، قوچان، ایران

3 دانشکده مهندسی، دانشگاه بیرجند، بیرجند، ایران

چکیده

استفاده از سامانه‌های تولید موج برای مطالعه آزمایشگاهی اثر موج بر سازه‌های دریایی تاکنون مورد توجه بسیاری از محققین قرار گرفته است. همچنین استفاده از روش‌های عددی با قابلیت شبیه سازی دینامیک موج در یک سیستم موج ساز عددی، به عنوان جایگزینی مناسب برای مطالعات هزینه‌بر تجربی، همواره مطرح بوده است. از آ نجایی که نسبت‌های طول به ارتفاع و عمق به ارتفاع موج در بسیاری از موارد به طور قابل توجهی بزر گتر از یک است، و از طرفی محاسبه دقیق هندسه موج نیاز به تمرکز بالای نقاط محاسباتی در محدوده مرز مشترک مایع-گاز دارد، روش‌های عددی که تاکنون ارائه شده اند، بسیار زمان بر می‌باشند. در این پژوهش، یک روش عددی سریع برای مدل سازی یک سامانه موج ساز پیستونی ارائه شده است که بر خلاف روش‌های قبلی از سرعت مناسبی برخوردار است. روش ارائه شده ترکیبی از روش لتیس بولتزمن با هندسه نقاط محاسباتی چند لایه متحرک و روش ونو برای اعمال شرط مرزی سینماتیکی سطح آزاد می‌باشد. نتایج حاصل از شبیه‌سازی عددی با تئوری موج ساز و نتایج آزمایشگاهی موجود برای موج ساز پیستونی مقایسه شده که تطابق بسیار خوبی بین آ نها مشاهده شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Simulation of a Piston-Type Wavemaker using Lattice-Boltzmann Method with Moving Nested Grids

نویسندگان [English]

  • E. Davarpanah 1
  • M. Anbarsooz 2
  • E. Rajabiani 3
1 Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
2 Engineering Department, Quchan University of Technology, Quchan, Iran
3 Engineering Department, University of Birjand, Birjand, Iran
چکیده [English]

Applications of the wavemaker mechanisms in the experimental investigations of wave-structure interactions have attracted various researchers’ attention. Numerical simulations capable of wave generation in a water tank are appropriate substitutes for the expensive experimental studies. Due to the large values of the wave length to wave height ratio and also the water depth to wave height ratio, extremely fine grid points are generally required at the gas-liquid interface and this causes the numerical simulations to be very time consuming. In this study, a new method is proposed for numerical simulation of a piston-type wavemaker which is faster than the previous methods. The proposed method is a combination of a Lattice-Boltzmann method with multilayer moving nested grids and iWeno5 method for treating the kinematic free surface boundary condition. The numerical results of the proposed method are compared with the analytical and experimental data, where a good agreement is observed.

کلیدواژه‌ها [English]

  • Wavemaker
  • piston
  • Lattice Boltzmann
  • Multi-Layer Grid
[1] M. Anbarsooz, M. Passandideh-Fard, M. Moghiman, Fully nonlinear viscous wave generation in numerical wave tanks, Ocean Engineering, 59 (2013) 73-85.
[2] T. Havelock, LIX. Forced surface-waves on water, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 8(51) (1929) 569-576.
[3] J.M. Hyun, Theory for hinged wavemakers of finite draft in water of constant depth, journal of Hydronautics, 10(1) (1976) 2-7.
[4] O.S. Madsen, On the generation of long waves, Journal of Geophysical Research, 76(36) (1971) 8672-8683.
[5] R. Flick, R. Guza, Paddle generated waves in laboratory channels, in: Journal of the Waterway, Port, Coastal and Ocean Division, American Society of Civil Engineers, 1980.
[6] W. Moubayed, A. Williams, Second-Order Bichromatic Waves Produced By Generic Planar Wavemaker In A Two-Dimensional Wave Flume, Journal of fluids and structures, 8(1) (1994) 73-92.
[7] H.A. Schäffer, Second-order wavemaker theory for irregular waves, Ocean Engineering, 23(1) (1996) 47-88.
[8] J. Larsen, H. Dancy, Open boundaries in short wave simulations—a new approach, Coastal Engineering, 7(3) (1983) 285-297.
[9] M. Brorsen, J. Larsen, Source generation of nonlinear gravity waves with the boundary integral equation method, Coastal Engineering, 11(2) (1987) 93-113.
[10] B. Li, C.A. Fleming, Three-dimensional model of Navier-Stokes equations for water waves, Journal of waterway, port, coastal, and ocean engineering, 127(1) (2001) 16-25.
[11] G. Wei, J.T. Kirby, A. Sinha, Generation of waves in Boussinesq models using a source function method, Coastal Engineering, 36(4) (1999) 271-299.
[12] S.-X. Liu, B. Teng, Y.-X. Yu, Wave generation in a computation domain, Applied mathematical modelling, 29(1) (2005) 1-17.
[13] R.K.-C. Chan, R.L. Street, A computer study of finite-amplitude water waves, Journal of Computational Physics, 6(1) (1970) 68-94.
[14] F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Physics of fluids, 8(12) (1965) 2182..
[15] C. Tang, V. Patel, L. Landweber, Viscous effects on propagation and reflection of solitary waves in shallow channels, Journal of Computational Physics, 88(1) (1990) 86-113.
[16] C.-J. Huang, E.-C. Zhang, J.-F. Lee, Numerical simulation of nonlinear viscous wavefields generated by piston-type wavemaker, Journal of Engineering Mechanics, 124(10) (1998) 1110-1120.
[17] C.-J. Huang, C.-M. Dong, On the interaction of a solitary wave and a submerged dike, Coastal Engineering, 43(3) (2001) 265-286.
[18] C.-M. Dong, C.-J. Huang, Generation and propagation of water waves in a two-dimensional numerical viscous wave flume, Journal of waterway, port, coastal, and ocean engineering, 130(3) (2004) 143-153.
[19] H.-W. Wang, C.-J. Huang, J. Wu, Simulation of a 3D numerical viscous wave tank, Journal of Engineering Mechanics, 133(7) (2007) 761-772.
[20] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of computational physics, 39(1) (1981) 201-225.
[21] P. Lin, P.L.-F. Liu, A numerical study of breaking waves in the surf zone, Journal of fluid mechanics, 359(1) (1998) 239-264.
[22] P. Troch, J. De Rouck, An active wave generating–absorbing boundary condition for VOF type numerical model, Coastal Engineering, 38(4) (1999) 223-247.
[23] D. Apsley, W. Hu, CFD simulation of two‐and three‐dimensional free‐surface flow, International Journal for Numerical Methods in Fluids, 42(5) (2003) 465-491.
[24] K. Kawasaki, Numerical simulation of breaking and post-breaking wave deformation process around a submerged breakwater, Coastal Engineering Journal, 41(03n04) (1999) 201-223.
[25] P.D. Hieu, K. Tanimoto, Verification of a VOF-based two-phase flow model for wave breaking and wave–structure interactions, Ocean engineering, 33(11) (2006) 1565-1588.
[26] D.-S. Hur, N. Mizutani, D.-S. Kim, Direct 3-D numerical simulation of wave forces on asymmetric structures, Coastal engineering, 51(5) (2004) 407-420.
[27] D.J. Wood, G.K. Pedersen, A. Jensen, Modelling of run up of steep non-breaking waves by fluent, Preprint series. Mechanics and Applied Mathematics, http://urn. nb. no/URN: NBN: no-23418(2001)..
[28] W. Finnegan, J. Goggins, Numerical simulation of linear water waves and wave–structure interaction, Ocean Engineering, 43 (2012) 23-31.
[29] Z. Zhao, P. Huang, Y. Li, J. Li, A lattice Boltzmann method for viscous free surface waves in two dimensions, International Journal for Numerical Methods in Fluids, 71(2) (2013) 223-248.
[30] Y. Nishi, P.V. Doan, Hybrid boundary condition combined with data assimilation for simulations of free surface flows using lattice Boltzmann method, Computers & Fluids, 88 (2013) 108-114.
[31] S. Bogner, U. Rüde, Simulation of floating bodies with the lattice Boltzmann method, Computers & Mathematics with Applications, 65(6) (2013) 901-913.
[32] K.E. Wardle, T. Lee, Finite element lattice Boltzmann simulations of free surface flow in a concentric cylinder, Computers & Mathematics with Applications, 65(2) (2013) 230-238.
[33] Y. Thorimbert, J. Latt, L. Cappietti, B. Chopard, Virtual wave flume and Oscillating Water Column modeled by lattice Boltzmann method and comparison with experimental data, International Journal of Marine Energy, 14 (2016) 41-51.
[34] A.J. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, Journal of Fluid Mechanics, 271 (1994) 311-339.
[35] M. Rohde, D. Kandhai, J. Derksen, H. Van den Akker, A generic, mass conservative local grid refinement technique for lattice‐Boltzmann schemes, International journal for numerical methods in fluids, 51(4) (2006) 439-468.
[36] D.G. Goring, Tsunamis--the propagation of long waves onto a shelf, California Institute of Technology, 1978.
[37] F. Ursell, R.G. Dean, Y. Yu, Forced small-amplitude water waves: a comparison of theory and experiment, Journal of Fluid Mechanics, 7(01) (1960) 33-52.